APPENDIX A

TAUPŌ TRANSPORT MODEL FUTURE YEAR REPORT TECHNICAL NOTE PREPARED BY ABLEY

Note: Where it says 2053, this references 2053+ (Full Development Scenario).

Taupō Transport Model Future Year Report

Technical Note

Prepared for Taupō District Council

Job Number WNZL-J020

Revision 1

Issue Date 16 February 2024

Prepared by Regan Toogood, Graduate Transportation Modeller

Reviewed by Dave Smith, Technical Director - Transportation Planning

1. Introduction

Abley were commissioned by WSP on behalf of Taupō District Council (TDC) to prepare 2033 and 2053 future years for the Taupō Transportation Model. The future year models are intended an assessment tool to support the Taupō Northern Access Study. This technical note builds off the *Taupō 2023 Model Validation technical note* prepared by Abley which reports the process for updated the base year model from 2013 to a revised 2023 base, and subsequent local area validation results in the vicinity of the Northern Access study area.

This future year technical note outlines the future year building methodology and presents outputs results from the future year models.

2. Assessment Methodology

2.1 Network

The 2033 and 2053 do minimum road networks are unchanged from the 2023 network (which does include the recent Taupō town centre transformation improvements).

2.2 Households

Taupō District Council supplied a summary of all future greenfield developments as well as projections by SA2 for total new households. This development has been aggregated into those areas located to the north/west of the Control Gate Bridge (CGB) and areas to the south/east of the CGB. This aggregation has been made to understand how much potential development could occur in areas where traffic would need to travel across the Waikato River to reach the Taupō town centre.

The aggregated greenfield totals as supplied by Council and their phasing (presented as percentage uptake) at 2033 and 2053 is presented in Table 2.1.

Table 2.1 Aggregated Greenfield Developments Summary

Development Location	Capacity	# Households 2033	% Developed 2033	# Households 2053	%Developed 2053
North/West of CGB	5050	706	14%	3432	68%
South/East of CGB	2616	798	31%	2167	83%
Total	7666	1504	20%	5599	73%

Infill values were taken directly from infill projections in 2033. 2053 Infill values were informed by the infill projections by SA2, and then increased pro-rata to get a total of 1800 infills. This guarantees that the total infill at 2053 is approximately 15% of the current number of households, as guided by council.

Greenfields were adjusted to ensure that the total number of additional households matched the projection for each SA2. In the case where a given greenfield project exceeds it's planned capacity, the additional households are added pro-rata to other greenfield projects in the model area.

This methodology ensures the following:

- Infill is no greater than 15% of the total household supply
- Total additional households by SA2 match their corresponding projections

Table 2.2 shows the total number of greenfield and infill households included in the model at 2023 and 2053.

Table 2.2 Infill and Greenfield Totals

Type of development	2033	2053
Infill	1052	1800
Greenfield	1000	5658
Total	2052	7458

Note that the total number of greenfield lots included is different to the total in Table 2.1. This is a reflection of the greenfield totals being factored to match the total household projections for each SA2. The adjusted aggregated greenfield household numbers are given in Table 2.3.

Table 2.3 List of Adjustments to Aggregated Greenfield Households

Development Location	2033 Supplied Data	2033 Adjusted Data	2053 Supplied Data	2053 Adjusted Data
North/West of CGB	706	469	3432	3570
South/East of CGB	798	531	2167	2088
Total	1504	1000	5599	5658

Note that the 2033 and 2053 Adjusted totals match the values expected from Table 2.2.

2.3 Population, Employment and Vehicles

It was assumed that the ratios of the number of people per household, number of jobs per household and number of cars per household remains constant from 2023. This is consistent with observed trends from Statistics New Zealand (based on population and household projections) for the District and aligns with industry best practice.

2.4 Jobs

It was assumed that the number of jobs was directly proportional to the growth in population, so jobs were simply factored up by the percentage growth in population. The growth in population (and jobs) can be found in Table 2.4. Given uncertainty around future rezoning in light of recent plan changes, it is recommended that potential commercial and industrial rezoning scenarios (such as Rangatira B) are treated as sensitivity tests.

2.5 Students

Growth projections from Stats NZ indicate that the school-aged population will have little to no growth from 2023-2053. Therefore, there is no growth assumed in the future year models in the number of students. No new schools have been added or existing schools removed from the model.

2.6 Tourism

Historical Tourism data from 1979 to 2023 was used to create projections up to 2033. Adjustments were made to reflect the downturn in tourism due to Covid-19. The projections from 2033 to 2053 have been extrapolated on a linear basis using the 2023 to 2033 projections as a guide. This was done to prevent unbounded exponential growth in tourism numbers.

2.7 Externals

Similar to tourism, historical data back to 1999 was used to extrapolate linear growth in external traffic volumes out to 2053 with adjustments made due to Covid-19.

2.8 Land Use Totals

A summary of land use variable totals for each model year is presented in Table 2.4.

Table 2.4 Summary of land use variables

	2023	2033	2053	2033-2023 % Growth	2053-2023 % Growth
Persons/HH	31914	37383	52121	17%	63%
Employees/HH	16754	19658	27542	17%	64%
Cars/HH	20512	24029	33651	17%	64%
Household	12028	14080	19487	17%	62%
Students	5882	5882	5882	0%	0%
Retail Jobs	1541	1805	2516	17%	63%
Manufacturing Jobs	521	611	851	17%	63%
Wholesale Jobs	440	516	719	17%	63%
Office Jobs	2079	2436	3396	17%	63%
Community Jobs	2677	3136	4372	17%	63%
Agriculture Jobs	714	836	1166	17%	63%
Accommodation Jobs	1718	2012	2806	17%	63%
Total Jobs	12301	14409	20090	17%	63%
Visitors	2499	3315	4945	33%	98%

3. Modelled Outputs

The following sections include model outputs as follows:

- Traffic volume plots for the morning and evening peak hours in 2023, 2033 and 2053 are presented in Figure 3.1 through Figure 3.6 in section 3.1;
- Traffic volume change plots for the morning and evening peak hours comparing 2033 back against 2023 are presented in Figure 3.7 through Figure 3.8 in section 3.2;
- Traffic volume change plots for the morning and evening peak hours comparing 2053 back against 2023 are presented in Figure 3.9 through Figure 3.10 in section 3.3;
- Level of Service (LoS) plots for the morning and evening peak hours in 2023, 2033 and 2053 are presented in Figure 3.11 through Figure 3.16 in section 3.4 with the addition of plots with a wider view at 2053; and
- Travel time results for the routes presented in the model validation technical note are presented in section 3.5.

The intersection and link LoS thresholds applied for the model and colour coding are presented in Appendix A.

3.1 Hourly Traffic Volume Plots

Figure 3.1 2023 Morning Peak Hour Volumes Town Centre

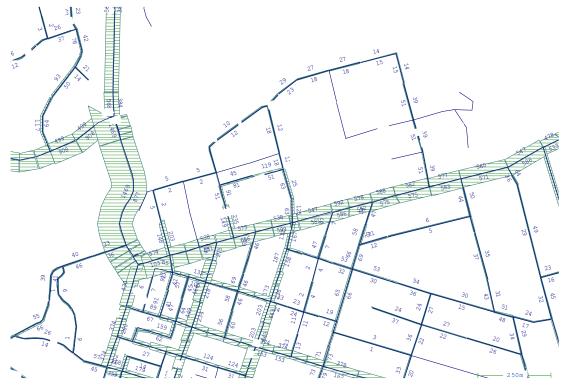


Figure 3.2 2023 Evening Peak Hour Volumes Town Centre

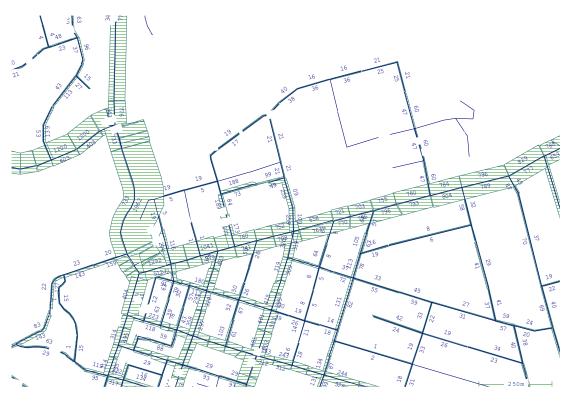


Figure 3.3 2033 Morning Peak Hour Volumes Town Centre



Figure 3.4 2033 Evening Peak Hour Volumes Town Centre

Figure 3.5 2053 Morning Peak Hour Volumes Town Centre

Figure 3.6 2053 Evening Peak Hour Volumes Town Centre

3.2 Hourly Traffic Volume Change Plots (2023-2033)

Figure 3.7 2033 Morning Peak Volume Change Town Centre

Figure 3.8 2033 Evening Peak Hour Volume Change Town Centre

3.3 Volume Change Plots (2023-2053)

Figure 3.9 2053 Morning Peak Hour Volume Change Town Centre

Figure 3.10 2053 Evening Peak Hour Volume Change Town Centre

3.4 Peak Hourly Level of Service (LoS) Plots

Figure 3.11 2023 Morning Peak Hour LoS Town Centre

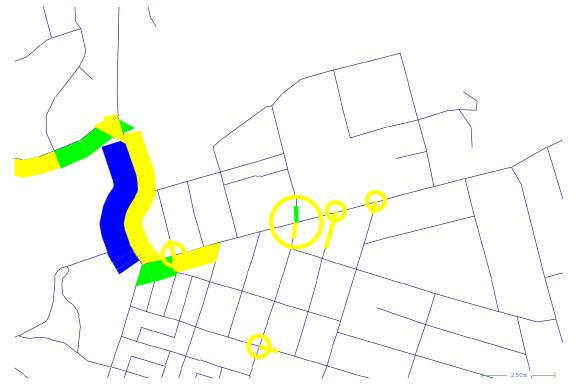


Figure 3.12 2023 Evening Peak Hour LoS Town Centre

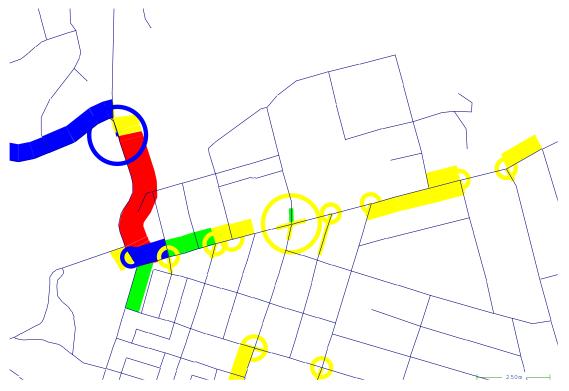


Figure 3.13 2033 Morning Peak Hour LoS Town Centre

Figure 3.14 2033 Evening Peak Hour LoS Town Centre

Figure 3.15 2053 Morning Peak Hour LoS Town Centre

Figure 3.16 2053 Evening Peak Hour LoS Town Centre

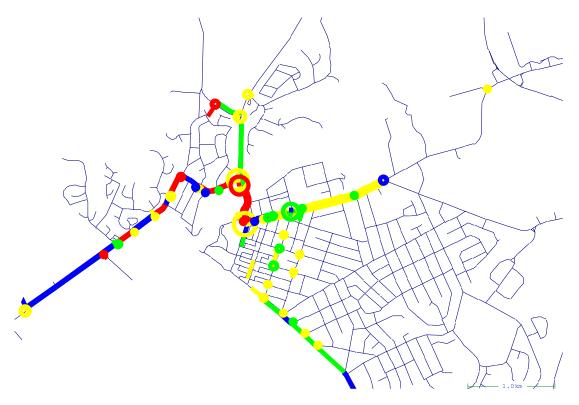


Figure 3.17 2053 Morning Peak Hour LOS Wider Network

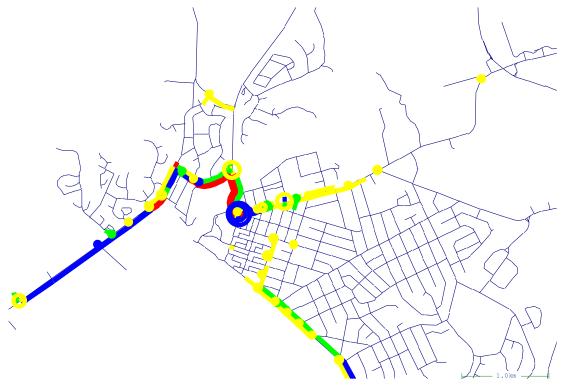


Figure 3.18 2053 Evening Peak Hour LOS Wider Network

3.5 Travel Times

TomTom Analytics data was sourced to validate travel times in the 2023 base model along the routes shown in Figure 3.19 and Figure 3.20. The same routes were analysed once the future models were developed to measure the modelled increase in travel times along these key paths due to future land use and traffic growth out to 2033 and 2053. The journey times for the morning and evening peak hours can be found in Figure 3.21 and Figure 3.22 respectively.



Figure 3.19 Huka Falls Rd to Tongariro St/ Tongariro St to Huka Falls Rd Routes

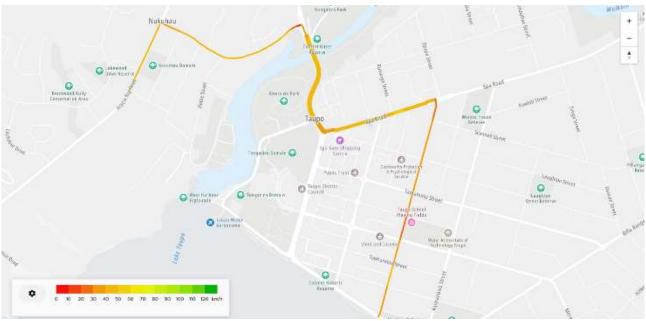


Figure 3.20 Acacia Bay Rd to Titīraupenga St/ Titīraupenga St to Acacia Bay Rd Routes

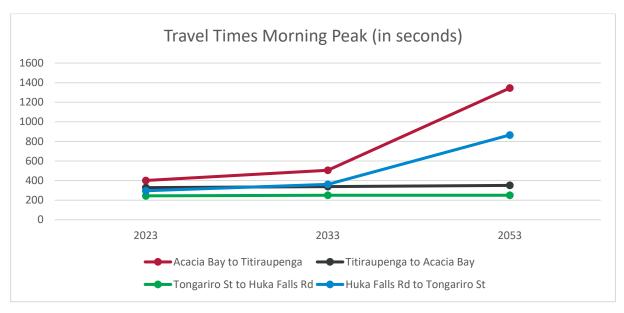


Figure 3.21 Morning Peak Hour Journey Times

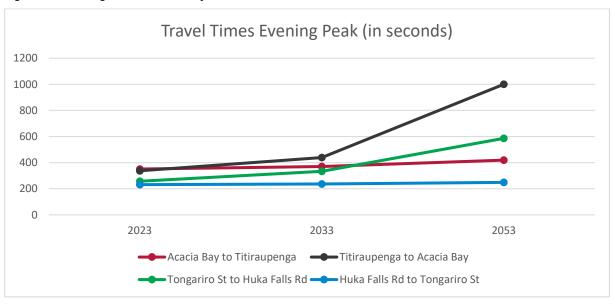


Figure 3.22 Evening Peak Hour Journey Times

Convergence

All period models have been converged until there is no difference between the output statistics on the penultimate and final model runs. The key model statistics are presented in Table 4.1 and this is in line with the convergence requirements of NZTA's Transport Model Development Guidelines¹.

¹ https://www.nzta.govt.nz/resources/transport-model-development-guidelines/

Table 4.1 Model Convergence Checks

Variable to check	Final	Penultimate	Difference
	203	33 Morning Peak	
Trips Total	15011	15011	0.00%
Vehicle Minutes	112193	112194	0.00%
Vehicle Kilometres	94009	94010	0.00%
Ave Trip Length (min)	7.47	7.47	0.00%
Ave Trip Length (km)	6.26	6.26	0.00%
Intrazonal Trips	413	413	0.00%
	203	33 Evening Peak	
Trips Total	13784	13784	0.00%
Vehicle Minutes	85843	85841	0.00%
Vehicle Kilometres	68103	68103	0.00%
Ave Trip Length (min)	6.23	6.23	0.00%
Ave Trip Length (km)	4.94	4.94	0.00%
Intrazonal Trips	805	805	0.00%
	205	53 Morning Peak	·
Trips Total	20233	20233	0.00%
Vehicle Minutes	198565	197878	-0.35%
Vehicle Kilometres	126541	126466	-0.06%
Ave Trip Length (min)	9.81	9.78	-0.31%
Ave Trip Length (km)	6.25	6.25	0.00%
Intrazonal Trips	775	777	0.26%
	205	53 Evening Peak	·
Trips Total	18599	18599	0.00%
Vehicle Minutes	151428	150717	-0.47%
Vehicle Kilometres	94964	94889	-0.08%
Ave Trip Length (min)	8.140	8.1	-0.49%
Ave Trip Length (km)	5.110	5.1	-0.20%
Intrazonal Trips	1094	1097	0.27%

5. Discussion

5.1 Intersection and Link Level of Service

In the base year (2023), the only notable LoS issues, in order of severity are:

- Tongariro St between Spa Rd and Norman Smith St at peak times
- Norman Smith St near Wairakei Dr, particularly in the eastbound direction in the morning peak
- Spa Rd near Tongariro St, particularly in the westbound direction in the morning peak

These issues remain in 2033, but the severity of each in terms of LoS classification has worsened. This indicates that the current problems experienced on the network in these locations will be exacerbated by growth out beyond 2023.

Additional LoS issues arise by 2053 based on the modelled outputs, specifically:

- Wairakei Dr north of Norman Smith St particularly in the southbound direction in the morning peak, which likely arises due to the poor performance of the merge on the opposite side of the Tongariro St/ Wairakei Dr/ Norman Smith St intersection. This merge also has poor LoS
- Tongariro St south of Spa Rd
- Spa Rd intersections with Tītīraupenga St, Motukaiko St, Gascoigne St, Runanga St.
- Tongariro/Spa Rd Roundabout, particularly in the evening peak from the South and East approaches

Observing the change in volume in the 2033 and 2053 years, it is predicted that there will be far higher usage of Tongariro St between Norman Smith St and Spa Rd, with about half of the additional use coming from Wairakei Dr and the other half coming from Norman Smith St. Due to further development to the north and west of Taupō requiring access to the Taupō town centre via the control bridge, this piece of key infrastructure is operating over capacity in the future models.

The quantum of growth out to 2053 results in wider LoS issues on the transport network including along the length of Acacia Bay Road and Norman Smith Street in both peak periods, and along Lake Terrace to the south.

5.2 Subsequent increases to travel times

The worsening network performance based on LoS results in slower network speeds and increased delays. Both routes travelling south towards the Taupō town centre in the morning peak almost triple in travel time.

The corresponding impact in the evening peak is not as severe, but there is still at least double in travel times travelling northbound across the Control Gate Bridge.

5.3 Travel Total Changes

Table 5.1 shows a summary of the change in travel totals across the model study area. These results provide an overview of how travel time, travel distance and average trip lengths change in response to the future land use growth.

Table 5.1 Summary of change in travel totals

		2023	2033	2053	2023-2033 % Growth	2023-2053 % Growth
Morning	Trips Total	12830	15011	20233	17%	58%
Peak Hour	Vehicle Minutes	88313	112193	198565	27%	125%
	Vehicle Kilometres	76344	94009	126541	23%	66%
	Ave Trip Length (min)	6.88	7.47	9.81	9%	43%
	Ave Trip Length (km)	5.95	6.26	6.25	5%	5%
Evening	Trips Total	12028	13784	18599	15%	55%
Peak Hour	Vehicle Minutes	69905	85843	151428	23%	117%
	Vehicle Kilometres	57142	68103	94964	19%	66%
	Ave Trip Length (min)	5.81	6.23	8.14	7%	40%
	Ave Trip Length (km)	4.75	4.94	5.11	4%	8%

Demographic growth is anticipated in the model to increase by 17-18% between 2023 and 2033 and 60-62% between 2023 and 2053. The growth in trip totals and total vehicle kilometres travelled is generally in line with these totals, however average trip lengths in terms of time travelled increase at a far greater rate due to worsening congestion.

This document has been produced for the sole use of our client. Any use of this document by a third party is without liability and you should seek independent advice. © Abley Limited 2024. No part of this document may be copied without the written consent of either our client or Abley Limited. Refer to https://www.abley.com/output-terms-and-conditions-1-1/ for output terms and conditions.

Appendix A. Level of Service Methodology

Level of Service (LoS) gives an indicator for the degree of amenity to vehicle users on a network. In the context of this report, LoS is used as an indicator of network performance.

Figure 5.1 shows how Link LoS varies depending on link type. It shows that the higher the vehicle volume and the lower the free speed the worse the LoS becomes. Link types are defined as follows:

- Link type 1 equates to road speeds of 10km/hr
- Link type 2 and 12 equate to road speeds of 20km/hr and 25km/hr
- Link type 3 and 13 equate to road speeds of 30km/hr and 35km/hr
- Link type 4 and 14 equate to road speeds of 40km/hr and 45km/hr
- Link type 5 and 15 equate to road speeds of 50km/hr and 55km/hr
- Link type 6 and 16 equate to road speeds of 60km/hr and 65km/hr
- Link type 7 and 17 equate to road speeds of 70km/hr and 75km/hr
- Link type 8 and 18 equate to road speeds of 80km/hr and 85km/hr
- Link type 9 and 19 equate to road speeds of 90km/hr and 95km/hr
- Link type 10 and 11 equate to road speeds of 100km/hr and 110km/hr
- Link type 20 equates to road speeds of 105km/hr

Intersection LoS is based on the delay values as given in Table 5.2. The colour coding in the table and figure corresponds to the colours applied in the LoS plots in section 3.4 of this report.

Table 5.2 Level of Service definitions and criteria

	Definitions Of LoS									
		Taupō	Transporta LoS crite	ition Model ria						
LoS	Description	Link (vehicles		tersection delay/veh)						
		per hour)	Priority	Signal/Rotary						
LoS F	Forced flow. The amount of traffic approaching a point exceeds that which can pass it. Flow break-downs occur, and queuing and delays occur.	In excess of 900-1700 depending on link type	50 sec	80 sec						
LoS E	Traffic volumes are at or close to capacity and there is virtually no freedom to select desired speed and to manoeuvre within the traffic stream. Flow is unstable and minor disturbances within the traffic stream will cause break-downs in operation.	Between 720-1360 depending on link type	35 sec	55 sec						
LoS D	Approaching unstable flow where all drivers are severely restricted in their freedom to select desired speed and to manoeuvre within the traffic stream. The general level of comfort and convenience is poor and small increases in traffic flow will cause operational problems.	Between 585-1105 depending on link type	25 sec	35 sec						

	Definitions Of LoS									
		Taupō	Transporta LoS crite	ntion Model ria						
LoS	Description	Link (vehicles		tersection delay/veh)						
		per hour)	Priority	Signal/Rotary						
LoS C	Stable flow but most drivers are restricted to some extent in their freedom to select their desired speed and to manoeuvre within the traffic stream. The general level of comfort and convenience has declined noticeably.	Between 450-850 depending on link type	15 sec	20 sec						
LoS B	Stable flow where drivers still have reasonable freedom to select their desired speed and to manoeuvre within the traffic stream. The general level of comfort and convenience is less than LoS A.	Not	<u> </u>							
LoS A	Free flow in which drivers are virtually unaffected by the presence of others in the traffic stream. Freedom to select desired speeds and to manoeuvre within the traffic stream is extremely high and the general level of comfort and convenience is excellent.	Not Applicable	No	t Applicable						

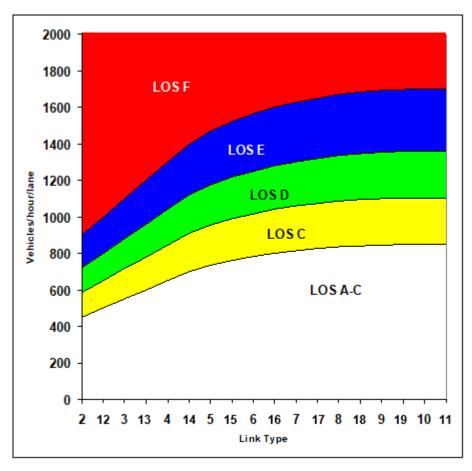


Figure 5.1 Taupō Transportation Model Link LoS Criteria (Vehicles per Lane per Hour)

Auckland

Level 1/70 Shortland Street Auckland 1010 Aotearoa New Zealand

Wellington

Level 1/119-123 Featherston Street Wellington 6011 Aotearoa New Zealand

Christchurch

Level 1/137 Victoria Street PO Box 36446, Merivale Christchurch 8146 Aotearoa New Zealand

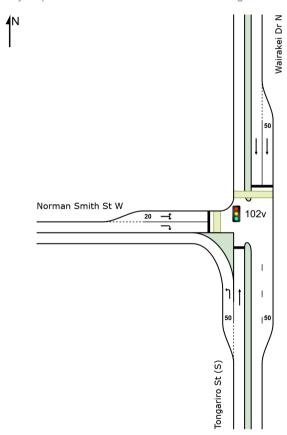
hello@abley.com +64 3 377 4703 abley.com

APPENDIX B

SIDRA MODEL RESULTS: 2023 BASE, 2033 BASE, 2053 BASE

Note: Where it says 2053, this references 2053+ (Full Development Scenario).

SITE LAYOUT


Site: 102v [Norman / Wairakei 2023 AM Base (Site Folder: 2023)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

MOVEMENT SUMMARY

Site: 102v [Norman / Wairakei 2023 AM Base (Site Folder: 2023)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 70 seconds (Site User-Given Cycle Time)

Vehicle	Vehicle Movement Performance													
Mov ID	Turn	INPUT V([Total	DLUMES HV]	DEMAND [Total	FLOWS HV]	Deg. Satn	Aver. Delay	Level of Service	95% BACK [Veh.	OF QUEUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South: To	ongariro S	st (S)												
1	L2	378	28	398	7.4	0.226	4.5	LOS A	0.0	0.0	0.00	0.46	0.00	48.1
2	T1	362	26	381	7.2	0.597	20.8	LOS C	11.0	81.4	0.88	0.76	0.88	48.1
Approac	h	740	54	779	7.3	0.597	12.5	LOS B	11.0	81.4	0.43	0.61	0.43	48.1
North: W	airakei Dr	· N												
8	T1	676	30	712	4.4	* 0.897	32.5	LOS C	21.8	158.2	0.92	1.01	1.20	47.2
Approac	h	676	30	712	4.4	0.897	32.5	LOS C	21.8	158.2	0.92	1.01	1.20	47.2
West: No	orman Sm	ith St W												
10	L2	8	0	8	0.0	0.288	16.8	LOS B	4.9	35.3	0.65	0.74	0.65	48.5
12	R2	816	24	859	2.9	* 0.920	35.6	LOS D	26.3	188.5	0.79	0.95	1.12	35.7
Approac	h	824	24	867	2.9	0.920	35.4	LOS D	26.3	188.5	0.79	0.95	1.11	36.3
All Vehic	les	2240	108	2358	4.8	0.920	27.0	LOS C	26.3	188.5	0.71	0.86	0.91	45.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	estrian Move	ment Perform	ance								
Mov		Input Vol.	Dem.	Aver.	Level of	AVERAGE BAC	CK OF QUEUE	Prop.	Effective Travel Time	Travel Dist.	Aver.
ID	Crossing		Flow	Delay	Service	[Ped	Dist]	Que	Stop Rate		Speed

		ped/h	ped/h	sec		ped	m			sec	m	m/sec
North	North: Wairakei Dr N											
P3	Full	50	53	29.3	LOS C	0.1	0.1	0.92	0.92	55.4	33.9	0.61
West	: Norman Smi	th St W										
P4	Full	50	53	29.3	LOS C	0.1	0.1	0.92	0.92	53.9	31.9	0.59
All Pe	edestrians	0	105	29.3	LOS C	0.1	0.1	0.92	0.92	54.6	32.9	0.60

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 7:31:07 pm

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

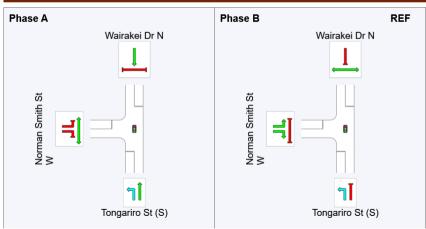
Site: 102v [Norman / Wairakei 2023 AM Base (Site Folder: 2023)]

New Site

Site Category: (None)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Opposed Turns Reference Phase: Phase B Input Phase Sequence: A, B Output Phase Sequence: A, B

Phase Timing Summary

Phase	Α	В
Phase Change Time (sec)	40	0
Green Time (sec)	24	34
Phase Time (sec)	30	40
Phase Split	43%	57%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

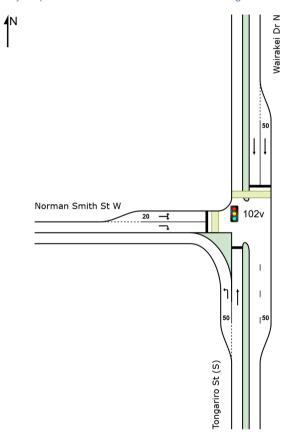
Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 7:31:07 pm
Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

SITE LAYOUT


Site: 102v [Norman / Wairakei 2023 PM Base (Site Folder: 2023)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

MOVEMENT SUMMARY

Site: 102v [Norman / Wairakei 2023 PM Base (Site Folder: 2023)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 50 seconds (Site User-Given Cycle Time)

Vehicle Movement Performance														
Mov ID	Turn	INPUT V([Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: To	ongariro S	st (S)												
1	L2	896	35	943	3.9	0.522	4.7	LOS A	0.0	0.0	0.00	0.46	0.00	47.9
2	T1	591	28	622	4.7	* 1.044	91.1	LOS F	38.2	278.2	1.00	1.99	2.68	42.8
Approac	h	1487	63	1565	4.2	1.044	39.0	LOS D	38.2	278.2	0.40	1.07	1.07	43.7
North: W	North: Wairakei Dr N													
8	T1	501	30	527	6.0	0.535	12.3	LOS B	7.7	56.6	0.78	0.66	0.78	48.9
Approac	h	501	30	527	6.0	0.535	12.3	LOS B	7.7	56.6	0.78	0.66	0.78	48.9
West: No	orman Sm	ith St W												
10	L2	5	0	5	0.0	* 0.176	17.4	LOS B	1.8	13.0	0.74	0.73	0.74	48.4
12	R2	412	17	434	4.1	0.564	18.5	LOS B	6.7	48.5	0.81	0.78	0.81	41.1
Approac	h	417	17	439	4.1	0.564	18.5	LOS B	6.7	48.5	0.81	0.78	0.81	41.6
All Vehic	les	2405	110	2532	4.6	1.044	29.9	LOS C	38.2	278.2	0.55	0.94	0.96	45.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance												
Mov		Input Vol.	Dem.	Aver.	Level of	AVERAGE BAC	CK OF QUEUE	Prop.	Effective Travel Time	Travel Dist.	Aver.	
ID	Crossing		Flow	Delay	Service	[Ped	Dist]	Que	Stop Rate		Speed	

		ped/h	ped/h	sec		ped	m			sec	m	m/sec
North	North: Wairakei Dr N											
P3	Full	50	53	19.4	LOS B	0.1	0.1	0.88	0.88	45.5	33.9	0.75
West	: Norman Smi	th St W										
P4	Full	50	53	19.4	LOS B	0.1	0.1	0.88	0.88	43.9	31.9	0.73
All Pe	edestrians	0	105	19.4	LOS B	0.1	0.1	0.88	0.88	44.7	32.9	0.74

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 6:52:46 pm

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

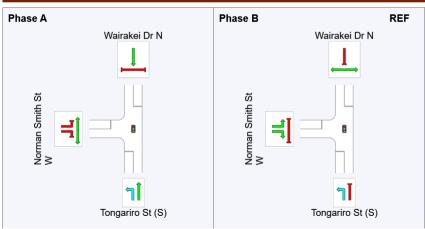
Site: 102v [Norman / Wairakei 2023 PM Base (Site Folder: 2023)]

New Site

Site Category: (None)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Opposed Turns Reference Phase: Phase B Input Phase Sequence: A, B Output Phase Sequence: A, B

Phase Timing Summary

Phase	Α	В
Phase Change Time (sec)	24	0
Green Time (sec)	20	18
Phase Time (sec)	26	24
Phase Split	52%	48%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

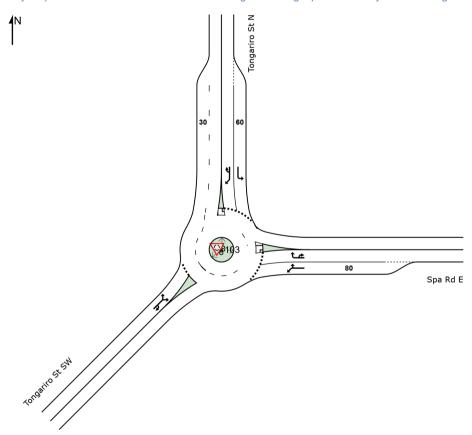
Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 6:52:46 pm
Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

SITE LAYOUT


▼ Site: 103 [Spa / Tongariro 2023 AM Base (Site Folder: 2023)]

New Site

Site Category: (None)

Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

MOVEMENT SUMMARY

♥ Site: 103 [Spa / Tongariro 2023 AM Base (Site Folder: 2023)]

New Site

Site Category: (None)

Roundabout

Vehicle	Movem	ent Perform	ance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Sp	a Rd E													
4a	L1	66	3	69	4.5	0.179	8.6	LOS A	1.0	7.0	0.69	0.79	0.69	43.7
6	R2	542	47	571	8.7	0.585	13.3	LOS B	5.7	42.9	0.84	0.95	1.02	42.9
6u	U	6	0	6	0.0	0.585	14.4	LOS B	5.7	42.9	0.85	0.96	1.04	43.0
Approac	h	614	50	646	8.1	0.585	12.8	LOS B	5.7	42.9	0.83	0.93	0.99	43.0
North: To	ongariro S	t N												
7	L2	943	45	993	4.8	0.635	4.9	LOS A	7.4	54.1	0.38	0.50	0.38	45.6
9a	R1	555	8	584	1.4	0.465	6.5	LOS A	4.0	28.6	0.31	0.56	0.31	45.0
9u	U	27	1	28	3.7	0.465	8.9	LOS A	4.0	28.6	0.31	0.56	0.31	46.3
Approac	h	1525	54	1605	3.5	0.635	5.6	LOS A	7.4	54.1	0.35	0.52	0.35	45.4
SouthW	est: Tonga	riro St SW												
30a	L1	192	5	202	2.6	0.372	4.3	LOS A	2.1	14.8	0.71	0.75	0.71	29.3
32a	R1	39	2	41	5.1	0.372	6.9	LOS A	2.1	14.8	0.71	0.75	0.71	29.4
32u	U	8	1	8	12.5	0.372	8.6	LOS A	2.1	14.8	0.71	0.75	0.71	29.9
Approac	h	239	8	252	3.3	0.372	4.9	LOS A	2.1	14.8	0.71	0.75	0.71	29.3
All Vehic	cles	2378	112	2503	4.7	0.635	7.4	LOSA	7.4	54.1	0.51	0.65	0.55	42.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

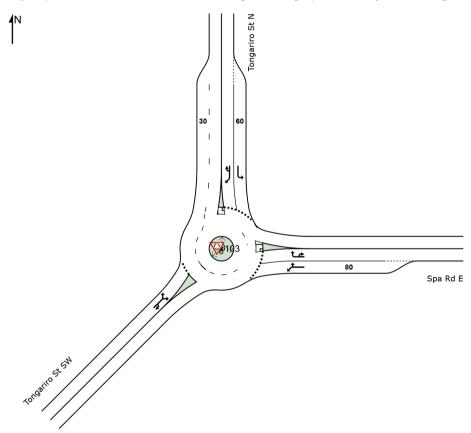
Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

♥ Site: 103 [Spa / Tongariro 2023 PM Base (Site Folder: 2023)]

New Site

Site Category: (None)

Roundabout

♥ Site: 103 [Spa / Tongariro 2023 PM Base (Site Folder: 2023)]

New Site

Site Category: (None)

Roundabout

Vehicle	Moveme	ent Perform	ance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Sp	a Rd E													
4a	L1	47	5	49	10.6	0.258	6.8	LOS A	1.4	10.3	0.59	0.74	0.59	43.9
6	R2	1077	45	1134	4.2	0.845	15.2	LOS B	15.7	114.2	0.91	0.95	1.25	42.2
6u	U	7	1	7	14.3	0.845	17.4	LOS B	15.7	114.2	0.96	0.98	1.34	41.8
Approac	ch	1131	51	1191	4.5	0.845	14.9	LOS B	15.7	114.2	0.90	0.94	1.22	42.2
North: To	ongariro S	t N												
7	L2	577	36	607	6.2	0.395	4.7	LOS A	3.4	25.1	0.26	0.50	0.26	45.9
9a	R1	314	12	331	3.8	0.276	6.4	LOS A	2.0	14.4	0.25	0.56	0.25	45.1
9u	U	22	1	23	4.5	0.276	9.0	LOS A	2.0	14.4	0.25	0.56	0.25	46.4
Approac	h	913	49	961	5.4	0.395	5.4	LOS A	3.4	25.1	0.26	0.52	0.26	45.6
SouthW	est: Tonga	ariro St SW												
30a	L1	313	9	329	2.9	0.936	44.6	LOS D	13.7	98.7	1.00	2.00	2.71	22.1
32a	R1	32	2	34	6.3	0.936	46.1	LOS D	13.7	98.7	1.00	2.00	2.71	21.9
32u	U	6	0	6	0.0	0.936	47.0	LOS D	13.7	98.7	1.00	2.00	2.71	21.5
Approac	ch	351	11	369	3.1	0.936	44.7	LOS D	13.7	98.7	1.00	2.00	2.71	22.1
All Vehic	cles	2395	111	2521	4.6	0.936	15.7	LOS B	15.7	114.2	0.67	0.94	1.07	38.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

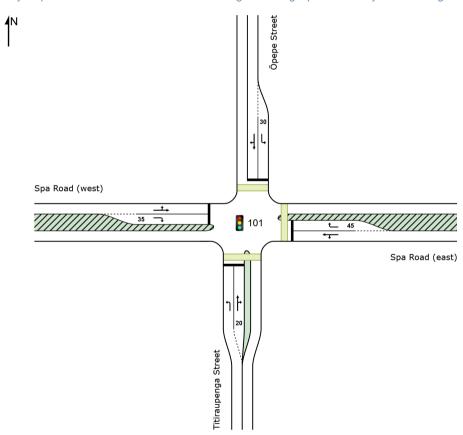
Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [Spa / Ōpepe/ Tītīraupenga 2023 AM Base (Site Folder: 2023)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Site: 101 [Spa / Ōpepe/ Tītīraupenga 2023 AM Base (Site Folder: 2023)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 117 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehicle	Moveme	ent Perform	ance											
Mov	Turn	INPUT VO		DEMAND		Deg.	Aver.	Level of		OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID		[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
Courthy T	ītīraupeno	veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South. 1														
1	L2	187	1	197	0.5	0.548	41.8	LOS D	9.2	64.4	0.86	0.78	0.86	33.0
2	T1	121	1	127	8.0	* 1.282	313.1	LOS F	20.9	147.1	1.00	1.72	3.08	15.1
3	R2	7	0	7	0.0	1.282	317.7	LOS F	20.9	147.1	1.00	1.72	3.08	30.6
Approac	h	315	2	332	0.6	1.282	152.2	LOS F	20.9	147.1	0.92	1.17	1.76	21.0
East: Sp	a Road (e	ast)												
4	L2	99	1	104	1.0	1.212	259.0	LOS F	81.1	586.7	1.00	2.08	2.62	33.1
5	T1	444	20	467	4.5	* 1.212	252.8	LOS F	81.1	586.7	1.00	2.08	2.62	32.9
6	R2	114	1	120	0.9	0.423	53.9	LOS D	6.3	44.7	0.95	0.79	0.95	45.6
Approac	h	657	22	692	3.3	1.212	219.2	LOS F	81.1	586.7	0.99	1.85	2.33	34.8
North: Ō	pepe Stre	ot												
7	L2	43	1	45	2.3	* 0.153	30.9	LOS C	1.5	11.0	0.89	0.72	0.89	47.3
8	T1	56	1	59	1.8	0.148	40.2	LOS D	2.8	20.1	0.85	0.66	0.85	38.9
9	R2	2	0	2	0.0	0.148	44.8	LOS D	2.8	20.1	0.85	0.66	0.85	38.1
Approac	h	101	2	106	2.0	0.153	36.4	LOS D	2.8	20.1	0.87	0.68	0.87	44.9
West: Sp	oa Road (v	west)												
10	L2	2	0	2	0.0	0.971	81.0	LOS F	42.9	311.1	0.99	1.23	1.43	32.0
11	T1	539	22	567	4.1	0.971	74.6	LOS E	42.9	311.1	0.99	1.23	1.43	43.6
12	R2	112	1	118	0.9	0.415	53.8	LOS D	6.2	43.9	0.95	0.78	0.95	30.0
Approac	h	653	23	687	3.5	0.971	71.1	LOS E	42.9	311.1	0.98	1.15	1.35	42.9
All Vehic	les	1726	49	1817	2.8	1.282	140.2	LOS F	81.1	586.7	0.97	1.39	1.77	36.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	strian Move	ment Performa	ance									
Mov ID	Crossing	Input Vol. ped/h	Dem. Flow ped/h	Aver. Delay sec	Level of Service	AVERAGE BACK ([Ped ped	OF QUEUE Dist] m	Prop. Que	Effective Tr Stop Rate	avel Time	Travel Dist. m	Aver. Speed m/sec
South	ı: Tītīraupenga	Street										
P1	Full	50	53	52.8	LOS E	0.2	0.2	0.95	0.95	228.8	228.8	1.00
East:	Spa Road (ea	st)										
P2	Full	50	53	52.8	LOS E	0.2	0.2	0.95	0.95	219.5	216.8	0.99
North	: Ōpepe Stree	t										
P3	Full	50	53	52.8	LOS E	0.2	0.2	0.95	0.95	217.3	213.9	0.98
All Pe	edestrians	150	158	52.8	LOS E	0.2	0.2	0.95	0.95	221.9	219.8	0.99

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 3:21:53 pm

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

Site: 101 [Spa / Ōpepe/ Tītīraupenga 2023 AM Base (Site Folder: 2023)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 117 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

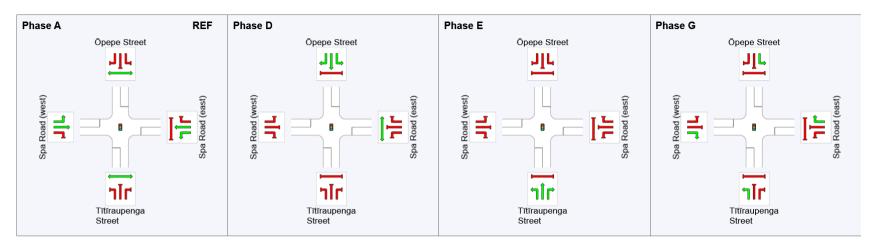
Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program Phase Sequence: Leading Right Turn

Reference Phase: Phase A

Input Phase Sequence: A, D, E, G, G1*, G2*

Output Phase Sequence: A, D, E, G


(* Variable Phase)

Phase Timing Summary

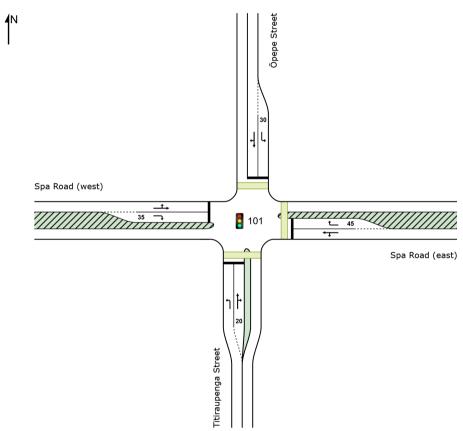
Phase	Α	D	E	G
Phase Change Time (sec)	0	48	79	93
Green Time (sec)	42	25	8	18
Phase Time (sec)	48	31	14	24
Phase Split	41%	26%	12%	21%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 3:21:53 pm
Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2023 PM (Site Folder: 2023)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2023 PM (Site Folder: 2023)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 117 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehicle	Moveme	ent Perform	ance											
Mov	Turn		OLUMES	DEMAND		Deg.	Aver.	Level of		OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	Satn v/c	Delay sec	Service	[Veh. veh	Dist] m	Que	Stop Rate	Cycles	Speed km/h
South: T	ītīraupeng	ja Street												
1	L2	90	1	95	1.1	0.201	41.3	LOS D	4.2	29.9	0.82	0.75	0.82	33.1
2	T1	34	0	36	0.0	* 0.446	62.1	LOS E	2.6	18.4	1.00	0.73	1.00	34.6
3	R2	8	0	8	0.0	0.446	66.7	LOS E	2.6	18.4	1.00	0.73	1.00	44.5
Approac	ch	132	1	139	8.0	0.446	48.2	LOS D	4.2	29.9	0.88	0.74	0.88	35.9
East: Sp	oa Road (e	ast)												
4	L2	52	0	55	0.0	0.969	81.4	LOS F	45.3	325.2	1.00	1.22	1.43	43.6
5	T1	507	17	534	3.4	* 0.969	75.2	LOS E	45.3	325.2	1.00	1.22	1.43	43.5
6	R2	22	1	23	4.5	0.084	50.7	LOS D	1.1	8.3	0.89	0.70	0.89	45.8
Approac	h	581	18	612	3.1	0.969	74.9	LOS E	45.3	325.2	1.00	1.20	1.41	43.6
North: Ō	pepe Stre	et												
7	L2	50	1	53	2.0	* 0.177	31.7	LOS C	1.9	13.2	0.90	0.73	0.90	47.3
8	T1	74	0	78	0.0	0.190	40.7	LOS D	3.7	25.9	0.86	0.67	0.86	38.8
9	R2	1	0	1	0.0	0.190	45.2	LOS D	3.7	25.9	0.86	0.67	0.86	38.1
Approac	ch	125	1	132	0.8	0.190	37.1	LOS D	3.7	25.9	0.87	0.70	0.87	44.6
West: S	pa Road (\	west)												
10	L2	7	0	7	0.0	0.786	42.1	LOS D	26.6	191.9	0.93	0.85	0.97	39.4
11	T1	490	17	516	3.5	0.786	35.7	LOS D	26.6	191.9	0.93	0.85	0.97	46.7
12	R2	41	0	43	0.0	0.151	51.3	LOS D	2.2	15.1	0.90	0.73	0.90	30.6
Approac	h	538	17	566	3.2	0.786	37.0	LOS D	26.6	191.9	0.93	0.84	0.96	46.3
All Vehic	cles	1376	37	1448	2.7	0.969	54.1	LOS D	45.3	325.2	0.95	0.97	1.13	44.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	strian Move	ment Performa	ance									
Mov ID	Crossing	Input Vol. ped/h	Dem. Flow ped/h	Aver. Delay sec	Level of Service	AVERAGE BACK ([Ped ped	OF QUEUE Dist] m	Prop. Que	Effective Tr Stop Rate	avel Time	Travel Dist. m	Aver. Speed m/sec
South	ı: Tītīraupenga	Street										
P1	Full	50	53	52.8	LOS E	0.2	0.2	0.95	0.95	228.8	228.8	1.00
East:	Spa Road (ea	st)										
P2	Full	50	53	52.8	LOS E	0.2	0.2	0.95	0.95	219.5	216.8	0.99
North	: Ōpepe Stree	t										
P3	Full	50	53	52.8	LOS E	0.2	0.2	0.95	0.95	217.3	213.9	0.98
All Pe	edestrians	150	158	52.8	LOS E	0.2	0.2	0.95	0.95	221.9	219.8	0.99

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 12:50:27 pm

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2023 PM (Site Folder: 2023)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 117 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

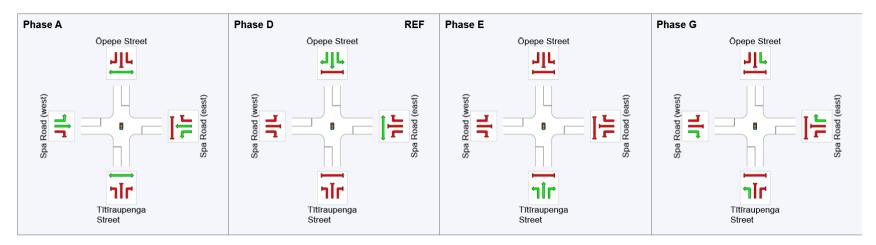
Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program Phase Sequence: Leading Right Turn

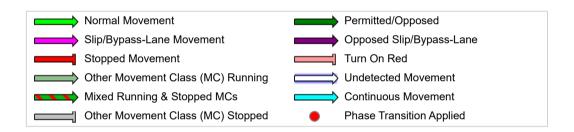
Reference Phase: Phase D

Input Phase Sequence: A, D, E, G, G1*, G2*

Output Phase Sequence: A, D, E, G


(* Variable Phase)

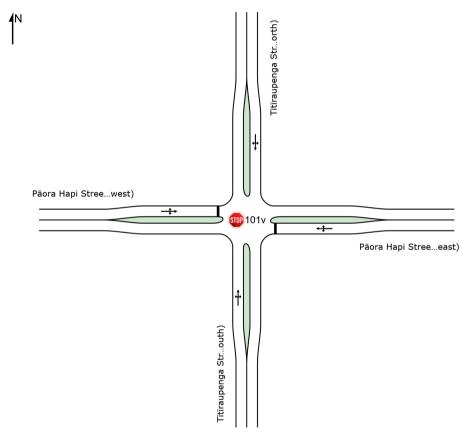
Phase Timing Summary


Phase	Α	D	Е	G
Phase Change Time (sec)	67	0	31	43
Green Time (sec)	44	25	6	18
Phase Time (sec)	50	31	12	24
Phase Split	43%	26%	10%	21%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase



SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 12:50:27 pm
Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2023 AM (Site Folder: 2023)]

New Site Site Category: (None) Stop (Two-Way)

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2023 AM (Site Folder: 2023)]

New Site

Site Category: (None) Stop (Two-Way)

Vehicl	e Movem	ent Perform	nance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	Tītīraupenç	ga Street (so	uth)											
1	L2	45	1	47	2.2	0.234	4.7	LOS A	0.1	0.7	0.02	0.07	0.02	40.6
2	T1	373	2	393	0.5	0.234	0.0	LOS A	0.1	0.7	0.02	0.07	0.02	49.3
3	R2	8	0	8	0.0	0.234	5.6	LOS A	0.1	0.7	0.02	0.07	0.02	47.6
Approa	ch	426	3	448	0.7	0.234	0.6	NA	0.1	0.7	0.02	0.07	0.02	48.2
East: P	āora Hapi s	Street (east)												
4	L2	14	0	15	0.0	0.057	8.4	LOS A	0.2	1.4	0.46	0.94	0.46	40.0
5	T1	16	0	17	0.0	0.057	12.4	LOS B	0.2	1.4	0.46	0.94	0.46	31.2
6	R2	4	0	4	0.0	0.057	13.2	LOS B	0.2	1.4	0.46	0.94	0.46	37.6
Approa	ch	34	0	36	0.0	0.057	10.9	LOS B	0.2	1.4	0.46	0.94	0.46	35.6
North:	Tītīraupeng	a Street (nor	th)											
7	L2	2	0	2	0.0	0.143	6.4	LOS A	0.2	1.5	0.10	0.05	0.10	47.9
8	T1	229	2	241	0.9	0.143	0.2	LOS A	0.2	1.5	0.10	0.05	0.10	49.1
9	R2	19	0	20	0.0	0.143	6.5	LOS A	0.2	1.5	0.10	0.05	0.10	38.0
Approa	ch	250	2	263	0.8	0.143	0.8	NA	0.2	1.5	0.10	0.05	0.10	48.2
West: F	Pāora Hapi	Street (west)												
10	L2	19	0	20	0.0	0.528	10.6	LOS B	2.8	19.6	0.74	1.22	1.18	28.3
11	T1	17	0	18	0.0	0.528	14.7	LOS B	2.8	19.6	0.74	1.22	1.18	27.4
12	R2	182	1	192	0.5	0.528	16.6	LOS C	2.8	19.6	0.74	1.22	1.18	30.4
Approa	ch	218	1	229	0.5	0.528	16.0	LOS C	2.8	19.6	0.74	1.22	1.18	30.1
All Vehi	icles	928	6	977	0.6	0.528	4.6	NA	2.8	19.6	0.23	0.37	0.33	42.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

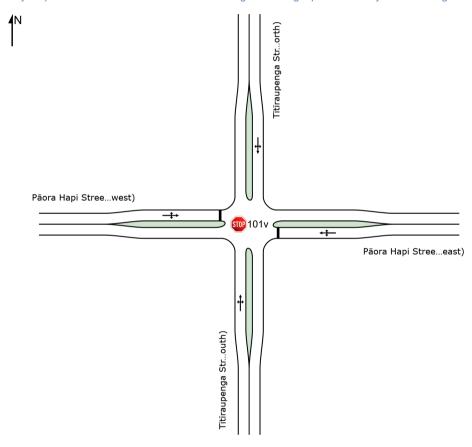
Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 7:54:11 am

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2023 PM (Site Folder: 2023)]

New Site Site Category: (None) Stop (Two-Way)

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2023 PM (Site Folder: 2023)]

New Site

Site Category: (None) Stop (Two-Way)

Vehicl	e Moveme	ent Perform	nance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	Tītīraupeng	ga Street (so	uth)											
1	L2	52	1	55	1.9	0.114	4.7	LOS A	0.1	0.6	0.04	0.15	0.04	40.0
2	T1	144	1	152	0.7	0.114	0.1	LOS A	0.1	0.6	0.04	0.15	0.04	48.3
3	R2	8	0	8	0.0	0.114	5.3	LOS A	0.1	0.6	0.04	0.15	0.04	46.7
Approa	ch	204	2	215	1.0	0.114	1.4	NA	0.1	0.6	0.04	0.15	0.04	45.9
East: P	āora Hapi S	Street (east)												
4	L2	8	0	8	0.0	0.047	8.3	LOS A	0.2	1.2	0.42	0.93	0.42	41.0
5	T1	20	0	21	0.0	0.047	9.8	LOS A	0.2	1.2	0.42	0.93	0.42	32.0
6	R2	6	0	6	0.0	0.047	10.1	LOS B	0.2	1.2	0.42	0.93	0.42	38.7
Approa	ch	34	0	36	0.0	0.047	9.5	LOS A	0.2	1.2	0.42	0.93	0.42	35.2
North:	Γītīraupeng	a Street (nor	th)											
7	L2	6	0	6	0.0	0.133	5.2	LOS A	0.2	1.5	0.09	0.07	0.09	47.7
8	T1	207	1	218	0.5	0.133	0.1	LOS A	0.2	1.5	0.09	0.07	0.09	49.0
9	R2	24	0	25	0.0	0.133	5.3	LOS A	0.2	1.5	0.09	0.07	0.09	37.9
Approa	ch	237	1	249	0.4	0.133	8.0	NA	0.2	1.5	0.09	0.07	0.09	47.8
West: F	Pāora Hapi	Street (west))											
10	L2	23	0	24	0.0	0.449	7.5	LOS A	2.5	17.6	0.56	1.11	0.77	30.7
11	T1	19	0	20	0.0	0.449	10.2	LOS B	2.5	17.6	0.56	1.11	0.77	29.9
12	R2	227	1	239	0.4	0.449	11.1	LOS B	2.5	17.6	0.56	1.11	0.77	32.7
Approa	ch	269	1	283	0.4	0.449	10.8	LOS B	2.5	17.6	0.56	1.11	0.77	32.4
All Vehi	icles	744	4	783	0.5	0.449	5.0	NA	2.5	17.6	0.26	0.51	0.34	40.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

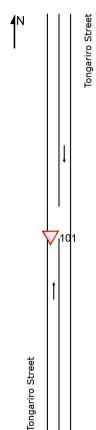
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.


SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 7:54:11 am

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

V Site: 101 [TCG Bridge 2023 AM (Site Folder: 2023)]

New Site

Site Category: (None) Give-Way (Two-Way)

V Site: 101 [TCG Bridge 2023 AM (Site Folder: 2023)]

New Site

Site Category: (None) Give-Way (Two-Way)

Vehicle	Movem	ent Perform	ance											
Mov ID	Turn	INPUT V([Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: T	ongariro S	Street												
2	T1	668	7.2	703	7.2	0.377	4.3	LOS A	0.0	0.0	0.00	0.53	0.00	54.5
Approac	h	668	7.2	703	7.2	0.377	4.3	NA	0.0	0.0	0.00	0.53	0.00	54.5
North: To	ongariro S	Street												
8	T1	1668	3.1	1756	3.1	0.918	6.0	LOS A	0.0	0.0	0.00	0.51	0.00	51.9
Approac	h	1668	3.1	1756	3.1	0.918	6.0	NA	0.0	0.0	0.00	0.51	0.00	51.9
All Vehic	eles	2336	4.3	2459	4.3	0.918	5.5	NA	0.0	0.0	0.00	0.51	0.00	52.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

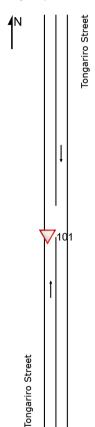
Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 7:54:12 am

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

▽ Site: 101 [TCG Bridge 2023 PM (Site Folder: 2023)]

New Site

Site Category: (None) Give-Way (Two-Way)

▽ Site: 101 [TCG Bridge 2023 PM (Site Folder: 2023)]

New Site

Site Category: (None) Give-Way (Two-Way)

Vehicle	Moveme	ent Perform	ance											
Mov ID	Turn	INPUT V([Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: T	ongariro S	Street												
2	T1	1469	4.4	1546	4.4	0.816	4.9	LOS A	0.0	0.0	0.00	0.52	0.00	53.5
Approac	ch	1469	4.4	1546	4.4	0.816	4.9	NA	0.0	0.0	0.00	0.52	0.00	53.5
North: T	ongariro S	treet												
8	T1	877	4.7	923	4.7	0.488	4.3	LOS A	0.0	0.0	0.00	0.53	0.00	54.5
Approac	ch	877	4.7	923	4.7	0.488	4.3	NA	0.0	0.0	0.00	0.53	0.00	54.5
All Vehic	cles	2346	4.6	2469	4.6	0.816	4.7	NA	0.0	0.0	0.00	0.52	0.00	53.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

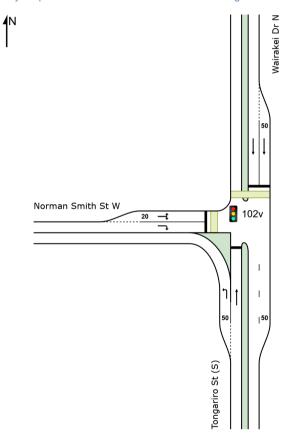
Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 7:28:44 pm


Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

Site: 102v [Norman / Wairakei 2033 AM Base (Site Folder: 2033 Base Year)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Site: 102v [Norman / Wairakei 2033 AM Base (Site Folder: 2033 Base Year)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Vehicle	Moveme	ent Perform	ance											
Mov ID	Turn	INPUT V([Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: To	ongariro S	st (S)												
1	L2	403	21	424	5.2	0.237	4.5	LOS A	0.0	0.0	0.00	0.46	0.00	48.1
2	T1	330	21	347	6.4	0.928	63.9	LOS E	23.1	170.7	0.90	1.08	1.30	44.7
Approac	h	733	42	772	5.7	0.928	31.2	LOS C	23.1	170.7	0.40	0.74	0.58	45.3
North: W	airakei Dr	. N												
8	T1	776	26	817	3.4	* 1.194	184.1	LOS F	82.7	595.5	0.95	1.69	2.04	37.1
Approac	h	776	26	817	3.4	1.194	184.1	LOS F	82.7	595.5	0.95	1.69	2.04	37.1
West: No	orman Sm	ith St W												
10	L2	13	0	14	0.0	0.336	18.5	LOS B	7.8	55.1	0.54	0.71	0.54	48.3
12	R2	1186	23	1248	1.9	* 1.073	113.6	LOS F	110.0	783.0	0.91	1.18	1.56	22.0
Approac	h	1199	23	1262	1.9	1.073	112.6	LOS F	110.0	783.0	0.90	1.17	1.55	22.8
All Vehic	les	2708	91	2851	3.4	1.194	111.1	LOS F	110.0	783.0	0.78	1.20	1.43	35.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	Pedestrian Movement Performance														
Mov		Input Vol.	Dem.	Aver.	Level of	AVERAGE BAC	CK OF QUEUE	Prop.	Effective Travel Time	Travel Dist.	Aver.				
ID	Crossing		Flow	Delay	Service	[Ped	Dist]	Que	Stop Rate		Speed				

		ped/h	ped/h	sec		ped	m			sec	m	m/sec
North	n: Wairakei Dr	N										
P3	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	80.3	33.9	0.42
West	: Norman Smi	ith St W										
P4	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	78.8	31.9	0.40
All Pe	edestrians	0	105	54.3	LOS E	0.2	0.2	0.95	0.95	79.6	32.9	0.41

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 8 April 2024 11:59:40 am

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

Site: 102v [Norman / Wairakei 2033 AM Base (Site Folder: 2033 Base Year)]

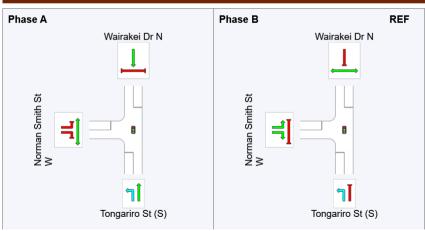
New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Opposed Turns Reference Phase: Phase B Input Phase Sequence: A, B Output Phase Sequence: A, B

Phase Timing Summary

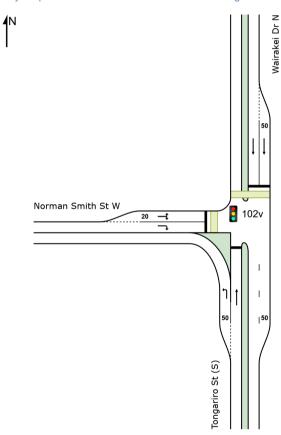
Phase	Α	В
Phase Change Time (sec)	76	0
Green Time (sec)	38	70
Phase Time (sec)	44	76
Phase Split	37%	63%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 8 April 2024 11:59:40 am
Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

Site: 102v [Norman / Wairakei 2033 PM Base (Site Folder: 2033 Base Year)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Site: 102v [Norman / Wairakei 2033 PM Base (Site Folder: 2033 Base Year)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 50 seconds (Site Practical Cycle Time)

Vehicle	Moveme	ent Perform	ance											
Mov ID	Turn	INPUT V([Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: To	ongariro S	st (S)												
1	L2	1110	19	1168	1.7	0.637	4.8	LOS A	0.0	0.0	0.00	0.46	0.00	47.7
2	T1	644	11	678	1.7	* 1.077	114.9	LOS F	48.1	341.6	1.00	2.25	3.04	41.2
Approach	1	1754	30	1846	1.7	1.077	45.2	LOS D	48.1	341.6	0.37	1.12	1.12	42.5
North: W	airakei Dr	· N												
8	T1	399	12	420	3.0	0.380	10.2	LOS B	5.4	38.4	0.69	0.58	0.69	49.1
Approach	า	399	12	420	3.0	0.380	10.2	LOS B	5.4	38.4	0.69	0.58	0.69	49.1
West: No	rman Sm	ith St W												
10	L2	10	0	11	0.0	0.327	20.6	LOS C	3.1	22.4	0.83	0.76	0.83	48.2
12	R2	622	19	655	3.1	* 1.045	79.5	LOS E	30.7	220.6	0.96	1.45	2.33	26.3
Approach	า	632	19	665	3.0	1.045	78.6	LOS E	30.7	220.6	0.96	1.44	2.30	27.5
All Vehic	es	2785	61	2932	2.2	1.077	47.8	LOS D	48.1	341.6	0.55	1.11	1.33	42.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	Pedestrian Movement Performance														
Mov		Input Vol.	Dem.	Aver.	Level of	AVERAGE BAC	CK OF QUEUE	Prop.	Effective Travel Time	Travel Dist.	Aver.				
ID	Crossing		Flow	Delay	Service	[Ped	Dist]	Que	Stop Rate		Speed				

		ped/h	ped/h	sec		ped	m			sec	m	m/sec
North	n: Wairakei Dr	N										
P3	Full	50	53	19.4	LOS B	0.1	0.1	0.88	0.88	45.5	33.9	0.75
West	: Norman Smi	th St W										
P4	Full	50	53	19.4	LOS B	0.1	0.1	0.88	0.88	43.9	31.9	0.73
All Pe	edestrians	0	105	19.4	LOS B	0.1	0.1	0.88	0.88	44.7	32.9	0.74

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 8 April 2024 11:59:40 am

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

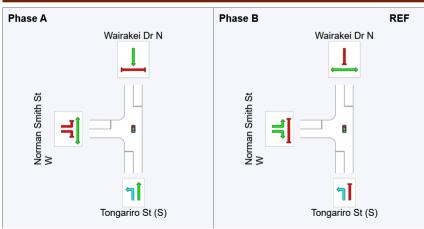
Site: 102v [Norman / Wairakei 2033 PM Base (Site Folder: 2033 Base Year)]

New Site

Site Category: (None)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Opposed Turns Reference Phase: Phase B Input Phase Sequence: A, B Output Phase Sequence: A, B

Phase Timing Summary

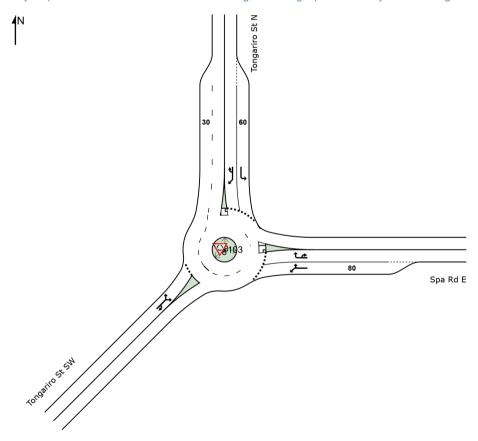
Phase	Α	В
Phase Change Time (sec)	22	0
Green Time (sec)	22	16
Phase Time (sec)	28	22
Phase Split	56%	44%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 8 April 2024 11:59:40 am
Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

▼ Site: 103 [Spa / Tongariro 2033 AM Base (Site Folder: 2033 Base Year)]

New Site

Site Category: (None)

Roundabout

▽ Site: 103 [Spa / Tongariro 2033 AM Base (Site Folder: 2033 Base Year)]

New Site

Site Category: (None)

Roundabout

Vehicle	Moveme	ent Perform	ance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Sp	a Rd E													
4a	L1	42	0	44	0.0	0.169	9.6	LOS A	1.0	6.9	0.76	0.84	0.76	42.7
6	R2	470	27	495	5.7	0.554	14.5	LOS B	5.4	39.6	0.90	0.99	1.09	42.4
6u	U	1	0	1	0.0	0.554	15.7	LOS B	5.4	39.6	0.91	1.00	1.12	42.5
Approac	ch	513	27	540	5.3	0.554	14.1	LOS B	5.4	39.6	0.89	0.98	1.06	42.4
North: To	ongariro S	t N												
7	L2	1226	29	1291	2.4	0.828	5.4	LOS A	16.8	119.9	0.67	0.49	0.67	45.1
9a	R1	648	19	682	2.9	0.589	6.8	LOS A	6.3	45.2	0.44	0.56	0.44	44.7
9u	U	64	0	67	0.0	0.589	9.2	LOS A	6.3	45.2	0.44	0.56	0.44	46.0
Approac	h	1938	48	2040	2.5	0.828	6.0	LOS A	16.8	119.9	0.59	0.52	0.59	45.0
SouthW	est: Tonga	riro St SW												
30a	L1	338	15	356	4.4	0.602	6.4	LOS A	4.7	33.7	0.80	0.96	0.98	28.8
32a	R1	66	0	69	0.0	0.602	8.8	LOS A	4.7	33.7	0.80	0.96	0.98	28.9
32u	U	1	0	1	0.0	0.602	10.2	LOS B	4.7	33.7	0.80	0.96	0.98	29.4
Approac	ch	405	15	426	3.7	0.602	6.8	LOS A	4.7	33.7	0.80	0.96	0.98	28.8
All Vehic	cles	2856	90	3006	3.2	0.828	7.6	LOS A	16.8	119.9	0.67	0.66	0.73	41.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

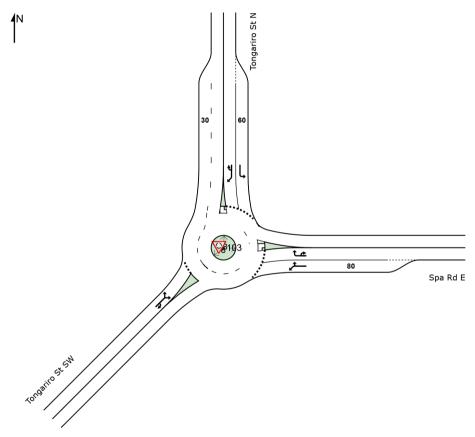
Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

▼ Site: 103 [Spa / Tongariro 2033 PM Base (Site Folder: 2033 Base Year)]

New Site

Site Category: (None)

Roundabout

▽ Site: 103 [Spa / Tongariro 2033 PM Base (Site Folder: 2033 Base Year)]

New Site

Site Category: (None)

Roundabout

Vehicle	Moveme	ent Perform	ance											
Mov ID	Turn	INPUT V([Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Sp	a Rd E													
4a	L1	33	0	35	0.0	0.303	7.4	LOS A	1.7	11.9	0.65	0.80	0.65	43.3
6	R2	1228	21	1293	1.7	0.992	39.3	LOS D	44.3	314.9	0.95	1.68	2.80	33.6
6u	U	1	1	1	100.0	0.992	50.9	LOS E	44.3	314.9	1.00	1.82	3.13	31.4
Approac	h	1262	22	1328	1.7	0.992	38.5	LOS D	44.3	314.9	0.95	1.66	2.74	33.7
North: To	ongariro S	it N												
7	L2	628	22	661	3.5	0.402	4.6	LOS A	3.7	26.5	0.18	0.50	0.18	46.1
9a	R1	351	9	369	2.6	0.328	6.2	LOS A	2.6	18.8	0.17	0.57	0.17	45.1
9u	U	86	0	91	0.0	0.328	8.8	LOS A	2.6	18.8	0.17	0.57	0.17	46.5
Approac	:h	1065	31	1121	2.9	0.402	5.5	LOS A	3.7	26.5	0.17	0.53	0.17	45.8
SouthW	est: Tonga	ariro St SW												
30a	L1	430	8	453	1.9	1.549	517.6	LOS F	119.6	850.0	1.00	8.25	13.69	5.5
32a	R1	30	0	32	0.0	1.549	517.9	LOS F	119.6	850.0	1.00	8.25	13.69	5.3
32u	U	1	0	1	0.0	1.549	519.3	LOS F	119.6	850.0	1.00	8.25	13.69	4.8
Approac	ch	461	8	485	1.7	1.549	517.6	LOS F	119.6	850.0	1.00	8.25	13.69	5.5
All Vehic	cles	2788	61	2935	2.2	1.549	105.1	LOS F	119.6	850.0	0.66	2.32	3.57	20.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

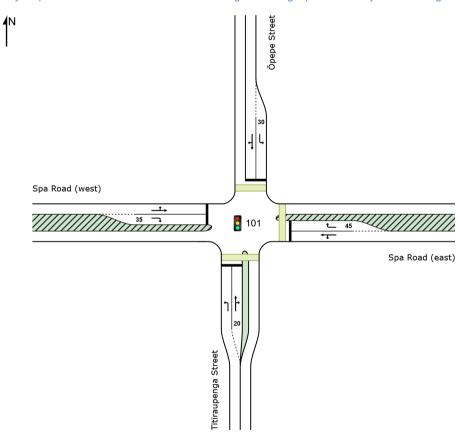
Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.


Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2033 AM Base (current 2023 phasing) (Site Folder:

2033 Base Year)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2033 AM Base (current 2023 phasing) (Site Folder: 2033 Base Year)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time) Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehicle	e Movem	ent Perform	ance											
Mov	Turn		OLUMES	DEMAND		Deg.	Aver.	Level of		OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	Satn v/c	Delay sec	Service	[Veh. veh	Dist] m	Que	Stop Rate	Cycles	Speed km/h
South:	Tītīraupeng	ga Street												
1	L2	191	2	201	1.0	0.607	44.6	LOS D	9.8	69.5	0.88	0.79	0.88	32.3
2	T1	121	1	127	8.0	* 1.404	419.0	LOS F	24.7	174.3	1.00	1.87	3.48	12.2
3	R2	7	0	7	0.0	1.404	423.6	LOS F	24.7	174.3	1.00	1.87	3.48	27.0
Approac	ch	319	3	336	0.9	1.404	194.9	LOS F	24.7	174.3	0.93	1.22	1.92	18.0
East: Sp	pa Road (e	east)												
4	L2	112	1	118	0.9	1.380	403.8	LOS F	120.1	870.9	1.00	2.56	3.26	27.8
5	T1	515	25	542	4.9	* 1.380	397.6	LOS F	120.1	870.9	1.00	2.56	3.26	27.6
6	R2	136	1	143	0.7	0.517	56.4	LOS E	7.9	55.7	0.97	0.80	0.97	45.4
Approac	ch	763	27	803	3.5	1.380	337.7	LOS F	120.1	870.9	0.99	2.25	2.85	29.9
North: C	Dpepe Stre	et												
7	L2	47	1	49	2.1	* 0.203	35.0	LOS C	1.9	13.5	0.93	0.73	0.93	47.0
8	T1	61	1	64	1.6	0.165	42.0	LOS D	3.2	22.6	0.86	0.67	0.86	38.5
9	R2	2	0	2	0.0	0.165	46.6	LOS D	3.2	22.6	0.86	0.67	0.86	37.7
Approac	ch	110	2	116	1.8	0.203	39.1	LOS D	3.2	22.6	0.89	0.69	0.89	44.5
West: S	pa Road (west)												
10	L2	2	0	2	0.0	1.046	128.3	LOS F	64.3	468.0	1.00	1.50	1.76	25.8
11	T1	603	28	635	4.6	1.046	121.9	LOS F	64.3	468.0	1.00	1.50	1.76	40.2
12	R2	146	2	154	1.4	0.557	56.8	LOS E	8.6	60.6	0.98	0.80	0.98	29.4
Approac	ch	751	30	791	4.0	1.046	109.3	LOS F	64.3	468.0	1.00	1.36	1.61	39.6
All Vehi	cles	1943	62	2045	3.2	1.404	209.1	LOS F	120.1	870.9	0.98	1.65	2.11	32.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	strian Move	ment Perform	ance									
Mov ID	Crossing	Input Vol.	Dem. Flow ped/h	Aver. Delay sec	Level of Service	AVERAGE BAC [Ped	Dist]	Prop. Que	Effective Tr Stop Rate	avel Time sec		Aver. Speed m/sec
South	ı: Tītīraupenga		реалт	360		ped	m			366	m	111/366
P1	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	230.3	228.8	0.99
East:	Spa Road (eas	st)										
P2	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	221.0	216.8	0.98
North	: Ōpepe Street	i										
P3	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	218.8	213.9	0.98
All Pe	edestrians	150	158	54.3	LOS E	0.2	0.2	0.95	0.95	223.4	219.8	0.98

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 3:05:57 pm

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2033 AM Base (current 2023 phasing) (Site Folder:

2033 Base Year)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

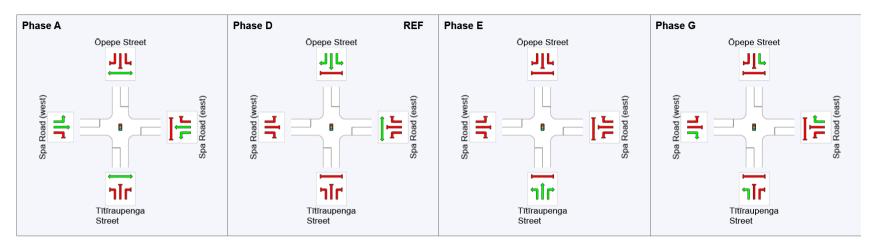
Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program Phase Sequence: Leading Right Turn

Reference Phase: Phase D

Input Phase Sequence: A, D, E, G, G1*, G2*

Output Phase Sequence: A, D, E, G


(* Variable Phase)

Phase Timing Summary

Phase	Α	D	E	G
Phase Change Time (sec)	68	0	31	44
Green Time (sec)	46	25	7	18
Phase Time (sec)	52	31	13	24
Phase Split	43%	26%	11%	20%

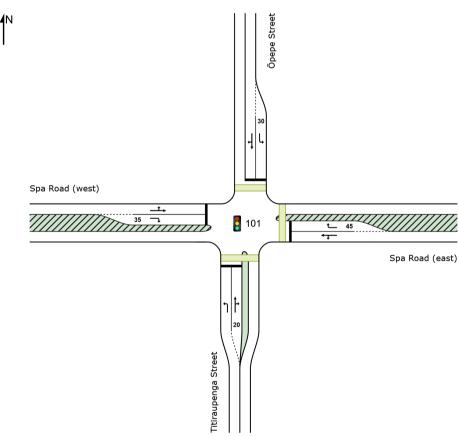
See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 3:05:57 pm
Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9


Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2033 PM Base (current 2023 phasing) (Site Folder:

2033 Base Year)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2033 PM Base (current 2023 phasing) (Site Folder:

2033 Base Year)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time) Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehicle	Vehicle Movement Performance Mov Turn INPUT VOLUMES DEMAND FLOWS Deg. Aver. Level of 95% BACK OF QUEUE Prop. Effective Aver. No. Aver.														
	Turn														
ID		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	Satn v/c	Delay sec	Service	[Veh. veh	Dist] m	Que	Stop Rate	Cycles	Speed km/h	
South: T	ītīraupeng		VEII/II	VCII/II	/0	V/C	366		ven					KIII/II	
1	L2	105	1	111	1.0	0.256	43.2	LOS D	5.2	36.5	0.84	0.76	0.84	22.6	
2	T1	37	0	39	1.0 0.0	* 0.501	43.2 64.1	LOS D	3.0	20.7	1.00	0.76	1.00	32.6 34.2	
3	R2	9	0	39 9	0.0	0.501	68.7	LOS E	3.0	20.7		0.74	1.00	44.3	
_		9 151		159	0.7			LOS D	5.2	36.5	1.00			35.4	
Approac	m	151	1	159	0.7	0.501	49.9	LOS D	5.2	30.5	0.89	0.75	0.89	35.4	
East: Sp	oa Road (e	east)													
4	L2	59	0	62	0.0	1.118	180.4	LOS F	81.5	585.3	1.00	1.74	2.10	37.1	
5	T1	592	20	623	3.4	* 1.118	174.2	LOS F	81.5	585.3	1.00	1.74	2.10	36.9	
6	R2	24	1	25	4.2	0.093	52.4	LOS D	1.3	9.3	0.89	0.71	0.89	45.7	
Approac	h	675	21	711	3.1	1.118	170.4	LOS F	81.5	585.3	1.00	1.70	2.06	37.2	
North: C	pepe Stre	et													
7	L2	53	1	56	1.9	* 0.228	35.5	LOS D	2.2	15.4	0.93	0.74	0.93	47.0	
8	T1	87	0	92	0.0	0.228	42.6	LOS D	4.5	31.7	0.87	0.69	0.87	38.4	
9	R2	1	0	1	0.0	0.228	47.2	LOS D	4.5	31.7	0.87	0.69	0.87	37.6	
Approac	h	141	1	148	0.7	0.228	40.0	LOS D	4.5	31.7	0.89	0.71	0.89	44.1	
West: S	pa Road (west)													
10	L2	13	0	14	0.0	0.865	49.5	LOS D	34.8	251.1	0.96	0.96	1.08	37.7	
11	T1	550	21	579	3.8	0.865	43.1	LOS D	34.8	251.1	0.96	0.96	1.08	46.1	
12	R2	48	0	51	0.0	0.181	53.2	LOS D	2.6	18.4	0.91	0.74	0.91	30.1	
Approac	ch	611	21	643	3.4	0.865	44.1	LOS D	34.8	251.1	0.96	0.94	1.07	45.7	
All Vehic	cles	1578	44	1661	2.8	1.118	98.3	LOS F	81.5	585.3	0.96	1.23	1.46	40.6	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	strian Mover	nent Perform	ance									
Mov ID	Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE BAC [Ped	Dist]	Prop. Que	Effective Tra Stop Rate	avel Time Tr		Aver. Speed
South	: Tītīraupenga	ped/h Street	ped/h	sec		ped	m			sec	m	m/sec
P1	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	230.3	228.8	0.99
East:	Spa Road (eas	st)										
P2	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	221.0	216.8	0.98
North	: Ōpepe Street											
P3	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	218.8	213.9	0.98
All Pe	edestrians	150	158	54.3	LOS E	0.2	0.2	0.95	0.95	223.4	219.8	0.98

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 3:06:12 pm

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2033 PM Base (current 2023 phasing) (Site Folder:

2033 Base Year)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

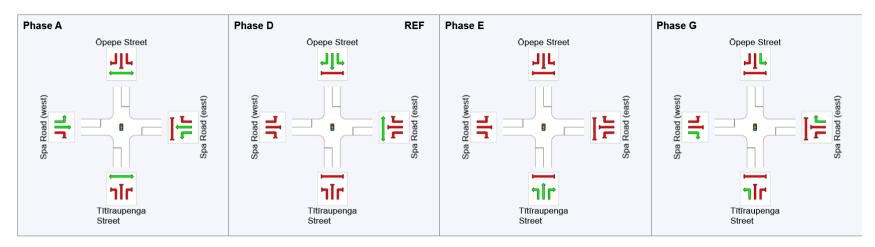
Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program Phase Sequence: Leading Right Turn

Reference Phase: Phase D

Input Phase Sequence: A, D, E, G, G1*, G2*

Output Phase Sequence: A, D, E, G


(* Variable Phase)

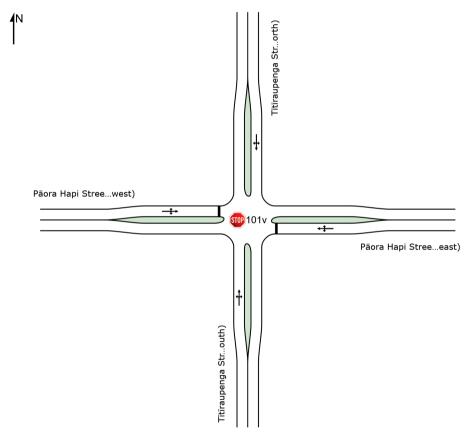
Phase Timing Summary

Phase	Α	D	E	G
Phase Change Time (sec)	67	0	31	43
Green Time (sec)	47	25	6	18
Phase Time (sec)	53	31	12	24
Phase Split	44%	26%	10%	20%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase



SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 3:06:12 pm
Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2033 AM Base (Site Folder: 2033 Base Year)]

New Site Site Category: (None) Stop (Two-Way)

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2033 AM Base (Site Folder: 2033 Base Year)]

New Site

Site Category: (None) Stop (Two-Way)

Vehicl	e Movem	ent Perform	nance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	Tītīraupeng	ga Street (sou	uth)											
1	L2	80	1	84	1.3	0.265	4.7	LOS A	0.1	0.9	0.03	0.10	0.03	40.4
2	T1	392	2	413	0.5	0.265	0.0	LOS A	0.1	0.9	0.03	0.10	0.03	48.9
3	R2	9	0	9	0.0	0.265	5.9	LOS A	0.1	0.9	0.03	0.10	0.03	47.3
Approa	ch	481	3	506	0.6	0.265	0.9	NA	0.1	0.9	0.03	0.10	0.03	47.3
East: P	āora Hapi 🤅	Street (east)												
4	L2	16	0	17	0.0	0.074	8.6	LOS A	0.3	1.8	0.51	0.96	0.51	39.4
5	T1	19	0	20	0.0	0.074	14.0	LOS B	0.3	1.8	0.51	0.96	0.51	30.7
6	R2	4	0	4	0.0	0.074	14.3	LOS B	0.3	1.8	0.51	0.96	0.51	36.9
Approa	ch	39	0	41	0.0	0.074	11.8	LOS B	0.3	1.8	0.51	0.96	0.51	34.9
North:	Γītīraupeng	ja Street (nor	th)											
7	L2	3	0	3	0.0	0.170	6.8	LOS A	0.3	1.8	0.11	0.05	0.11	47.8
8	T1	271	3	285	1.1	0.170	0.3	LOS A	0.3	1.8	0.11	0.05	0.11	49.1
9	R2	21	0	22	0.0	0.170	6.9	LOS A	0.3	1.8	0.11	0.05	0.11	38.0
Approa	ch	295	3	311	1.0	0.170	0.8	NA	0.3	1.8	0.11	0.05	0.11	48.3
West: F	Pāora Hapi	Street (west)												
10	L2	20	0	21	0.0	0.716	15.0	LOS C	4.7	33.1	0.85	1.47	1.80	25.5
11	T1	19	0	20	0.0	0.716	20.8	LOS C	4.7	33.1	0.85	1.47	1.80	24.7
12	R2	216	2	227	0.9	0.716	23.5	LOS C	4.7	33.1	0.85	1.47	1.80	27.8
Approa	ch	255	2	268	0.8	0.716	22.6	LOS C	4.7	33.1	0.85	1.47	1.80	27.5
All Vehi	cles	1070	8	1126	0.7	0.716	6.5	NA	4.7	33.1	0.26	0.44	0.49	40.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

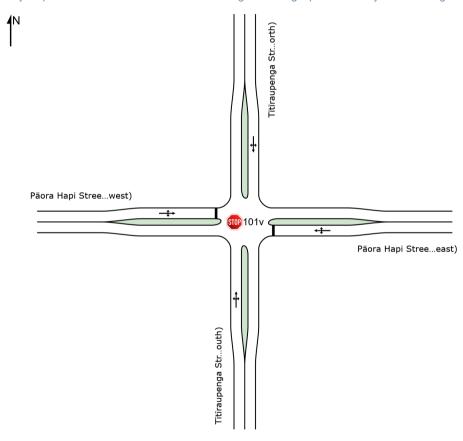
Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 7:54:19 am

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2033 PM Base (Site Folder: 2033 Base Year)]

New Site Site Category: (None) Stop (Two-Way)

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2033 PM Base (Site Folder: 2033 Base Year)]

New Site

Site Category: (None) Stop (Two-Way)

Vehicle	e Movem	ent Perform	nance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	Tītīraupenç	ga Street (sou	uth)											
1	L2	88	1	93	1.1	0.143	4.7	LOS A	0.1	0.7	0.04	0.20	0.04	39.7
2	T1	160	1	168	0.6	0.143	0.1	LOS A	0.1	0.7	0.04	0.20	0.04	48.0
3	R2	8	0	8	0.0	0.143	5.5	LOS A	0.1	0.7	0.04	0.20	0.04	46.4
Approa	ch	256	2	269	0.8	0.143	1.8	NA	0.1	0.7	0.04	0.20	0.04	44.8
East: Pa	āora Hapi \$	Street (east)												
4	L2	9	0	9	0.0	0.055	8.4	LOS A	0.2	1.4	0.45	0.94	0.45	40.6
5	T1	22	0	23	0.0	0.055	10.5	LOS B	0.2	1.4	0.45	0.94	0.45	31.7
6	R2	6	0	6	0.0	0.055	10.6	LOS B	0.2	1.4	0.45	0.94	0.45	38.3
Approa	ch	37	0	39	0.0	0.055	10.0	LOS B	0.2	1.4	0.45	0.94	0.45	34.9
North: T	ītīraupeng	a Street (nor	th)											
7	L2	6	0	6	0.0	0.150	5.4	LOS A	0.2	1.6	0.09	0.07	0.09	47.7
8	T1	235	1	247	0.4	0.150	0.1	LOS A	0.2	1.6	0.09	0.07	0.09	49.0
9	R2	25	0	26	0.0	0.150	5.5	LOS A	0.2	1.6	0.09	0.07	0.09	38.0
Approa	ch	266	1	280	0.4	0.150	8.0	NA	0.2	1.6	0.09	0.07	0.09	47.9
West: P	āora Hapi	Street (west)												
10	L2	23	0	24	0.0	0.566	8.8	LOS A	3.7	25.9	0.64	1.23	1.06	29.5
11	T1	19	0	20	0.0	0.566	12.4	LOS B	3.7	25.9	0.64	1.23	1.06	28.7
12	R2	266	1	280	0.4	0.566	13.6	LOS B	3.7	25.9	0.64	1.23	1.06	31.6
Approa	ch	308	1	324	0.3	0.566	13.2	LOS B	3.7	25.9	0.64	1.23	1.06	31.3
All Vehi	cles	867	4	913	0.5	0.566	5.9	NA	3.7	25.9	0.29	0.55	0.44	39.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

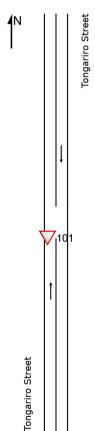
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.


SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 7:54:19 am

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

▽ Site: 101 [TCG Bridge 2033 AM (Site Folder: 2033 Base Year)]

New Site

Site Category: (None) Give-Way (Two-Way)

▽ Site: 101 [TCG Bridge 2033 AM (Site Folder: 2033 Base Year)]

New Site

Site Category: (None) Give-Way (Two-Way)

Vehicle	Movem	ent Perform	ance											
Mov ID	Turn	INPUT V0 [Total veh/h	DLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: T	ongariro S	Street												
2	T1	733	5.0	772	5.0	0.409	4.3	LOS A	0.0	0.0	0.00	0.53	0.00	54.5
Approac	h	733	5.0	772	5.0	0.409	4.3	NA	0.0	0.0	0.00	0.53	0.00	54.5
North: To	ongariro S	treet												
8	T1	1962	5.0	2065	5.0	1.094	45.3	LOS E	0.0	0.0	0.00	0.00	0.00	24.2
Approac	h	1962	5.0	2065	5.0	1.094	45.3	NA	0.0	0.0	0.00	0.00	0.00	24.2
All Vehic	cles	2695	5.0	2837	5.0	1.094	34.1	NA	0.0	0.0	0.00	0.14	0.00	28.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

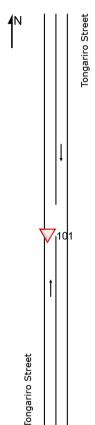
Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 7:54:20 am

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

▽ Site: 101 [TCG Bridge 2033 PM (Site Folder: 2033 Base Year)]

New Site

Site Category: (None) Give-Way (Two-Way)

▽ Site: 101 [TCG Bridge 2033 PM (Site Folder: 2033 Base Year)]

New Site

Site Category: (None) Give-Way (Two-Way)

Vehicle	Moveme	ent Perform	ance											
Mov ID	Turn	INPUT V([Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: T	South: Tongariro Street													
2	T1	1754	5.0	1846	5.0	0.978	9.1	LOS A	0.0	0.0	0.00	0.47	0.00	47.7
Approac	ch	1754	5.0	1846	5.0	0.978	9.1	NA	0.0	0.0	0.00	0.47	0.00	47.7
North: T	ongariro S	treet												
8	T1	1021	5.0	1075	5.0	0.569	4.4	LOS A	0.0	0.0	0.00	0.53	0.00	54.3
Approac	ch	1021	5.0	1075	5.0	0.569	4.4	NA	0.0	0.0	0.00	0.53	0.00	54.3
All Vehic	cles	2775	5.0	2921	5.0	0.978	7.4	NA	0.0	0.0	0.00	0.49	0.00	49.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

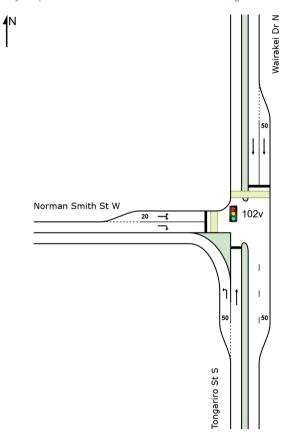
Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 7:54:21 am


Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

Site: 102v [Norman / Wairakei 2053 AM Base (Site Folder: 2053 Base Year)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Site: 102v [Norman / Wairakei 2053 AM Base (Site Folder: 2053 Base Year)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 70 seconds (Site Practical Cycle Time)

Vehicle	Moveme	ent Perform	ance											
Mov ID	Turn	INPUT V0 [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: To	ongariro S	St S												
1	L2	391	30	412	7.7	0.234	4.5	LOS A	0.0	0.0	0.00	0.46	0.00	48.1
2	T1	300	25	316	8.3	0.520	20.9	LOS C	8.9	66.8	0.86	0.73	0.86	48.1
Approac	h	691	55	727	8.0	0.520	11.6	LOS B	8.9	66.8	0.37	0.58	0.37	48.1
North: W	lorth: Wairakei Dr N													
8	T1	1112	26	1171	2.3	* 1.544	394.8	LOS F	160.9	1148.9	0.96	3.43	4.46	28.8
Approac	h	1112	26	1171	2.3	1.544	394.8	LOS F	160.9	1148.9	0.96	3.43	4.46	28.8
West: No	orman Sm	ith St W												
10	L2	31	1	33	3.2	0.535	19.5	LOS B	7.1	50.4	0.73	0.77	0.73	48.2
12	R2	1576	30	1659	1.9	* 1.710	573.5	LOS F	296.5	2109.4	0.96	2.96	5.57	6.7
Approac	h	1607	31	1692	1.9	1.710	562.8	LOS F	296.5	2109.4	0.95	2.92	5.48	7.4
All Vehic	les	3410	112	3589	3.3	1.710	396.4	LOS F	296.5	2109.4	0.84	2.61	4.11	20.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	estrian Move	ment Perform	ance								
Mov		Input Vol.	Dem.	Aver.	Level of	AVERAGE BAC	CK OF QUEUE	Prop.	Effective Travel Time	Travel Dist.	Aver.
ID	Crossing		Flow	Delay	Service	[Ped	Dist]	Que	Stop Rate		Speed

		ped/h	ped/h	sec		ped	m			sec	m	m/sec
North	n: Wairakei Dr	N										
P3	Full	50	53	29.3	LOS C	0.1	0.1	0.92	0.92	55.4	33.9	0.61
West	: Norman Smi	th St W										
P4	Full	50	53	29.3	LOS C	0.1	0.1	0.92	0.92	53.9	31.9	0.59
All Pe	edestrians	0	105	29.3	LOS C	0.1	0.1	0.92	0.92	54.6	32.9	0.60

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 8:06:15 pm

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

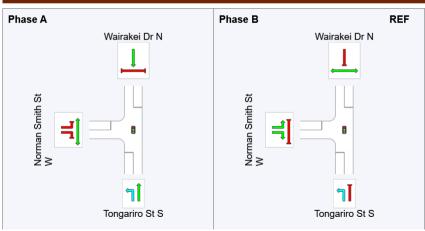
Site: 102v [Norman / Wairakei 2053 AM Base (Site Folder: 2053 Base Year)]

New Site

Site Category: (None)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Opposed Turns Reference Phase: Phase B Input Phase Sequence: A, B Output Phase Sequence: A, B

Phase Timing Summary

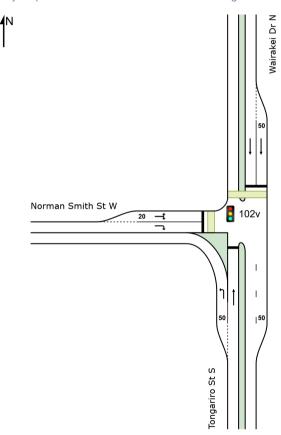
Phase	Α	В
Phase Change Time (sec)	41	0
Green Time (sec)	23	35
Phase Time (sec)	29	41
Phase Split	41%	59%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 8:06:15 pm
Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

Site: 102v [Norman / Wairakei 2053 PM Base (Site Folder: 2053 Base Year)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Site: 102v [Norman / Wairakei 2053 PM Base (Site Folder: 2053 Base Year)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 50 seconds (Site Practical Cycle Time)

Vehicle	Moveme	ent Perform	ance											
Mov ID	Turn	INPUT V([Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: T	ongariro S	St S												
1 2	L2 T1	1652 1008	26 16	1739 1061	1.6 1.6	0.947 * 1.518	7.9 493.3	LOS A LOS F	0.0 181.8	0.0 1289.9	0.00 1.00	0.43 5.37	0.00 7.38	44.3 26.1
Approac		2660	42	2800	1.6	1.518	191.9	LOS F	181.8	1289.9	0.38	2.30	2.80	28.6
North: W	/airakei Dr	- N												
8	T1	445	15	468	3.4	0.425	10.5	LOS B	6.1	44.1	0.71	0.60	0.71	49.1
Approac	ch	445	15	468	3.4	0.425	10.5	LOS B	6.1	44.1	0.71	0.60	0.71	49.1
West: N	orman Sm	ith St W												
10	L2	9	0	9	0.0	0.469	20.6	LOS C	5.0	36.1	0.86	0.79	0.86	48.2
12	R2	908	28	956	3.1	* 1.500	369.7	LOS F	120.9	868.6	0.97	2.98	5.72	9.7
Approac	:h	917	28	965	3.1	1.500	366.2	LOS F	120.9	868.6	0.97	2.96	5.67	10.2
All Vehic	cles	4022	85	4234	2.1	1.518	211.5	LOS F	181.8	1289.9	0.55	2.26	3.22	27.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	Pedestrian Movement Performance														
Mov		Input Vol.	Dem.	Aver.	Level of	AVERAGE BAC	CK OF QUEUE	Prop.	Effective Travel Time	Travel Dist.	Aver.				
ID	Crossing		Flow	Delay	Service	[Ped	Dist]	Que	Stop Rate		Speed				

		ped/h	ped/h	sec		ped	m			sec	m	m/sec
North	: Wairakei Dr	N										
P3	Full	50	53	19.4	LOS B	0.1	0.1	0.88	0.88	45.5	33.9	0.75
West	: Norman Sm	ith St W										
P4	Full	50	53	19.4	LOS B	0.1	0.1	0.88	0.88	43.9	31.9	0.73
All Pe	edestrians	0	105	19.4	LOS B	0.1	0.1	0.88	0.88	44.7	32.9	0.74

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 8:06:15 pm

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

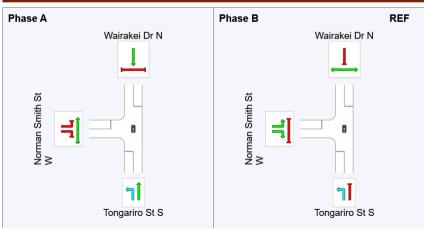
Site: 102v [Norman / Wairakei 2053 PM Base (Site Folder: 2053 Base Year)]

New Site

Site Category: (None)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Opposed Turns Reference Phase: Phase B Input Phase Sequence: A, B Output Phase Sequence: A, B

Phase Timing Summary

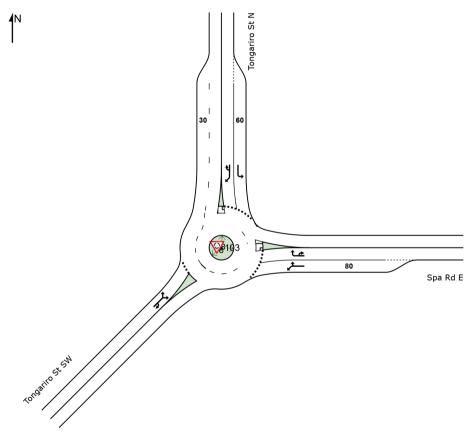
Phase	Α	В
Phase Change Time (sec)	22	0
Green Time (sec)	22	16
Phase Time (sec)	28	22
Phase Split	56%	44%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 8:06:15 pm
Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

▼ Site: 103 [Spa / Tongariro 2053 AM Base (Site Folder: 2053 Base Year)]

New Site

Site Category: (None)

Roundabout

▽ Site: 103 [Spa / Tongariro 2053 AM Base (Site Folder: 2053 Base Year)]

New Site

Site Category: (None)

Roundabout

Vehicle	Moveme	ent Perform	ance											
Mov ID	Turn	INPUT Vo [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Sp	oa Rd E													
4a	L1	29	0	31	0.0	0.271	14.4	LOS B	1.8	12.8	0.93	0.97	0.93	39.9
6	R2	491	36	517	7.3	0.887	48.9	LOS D	18.3	136.4	0.99	1.62	2.40	30.9
6u	U	1	1	1	100.0	0.887	61.1	LOS E	18.3	136.4	1.00	1.70	2.60	29.1
Approac	ch	521	37	548	7.1	0.887	47.0	LOS D	18.3	136.4	0.99	1.58	2.32	31.2
North: T	ongariro S	t N												
7	L2	1616	36	1701	2.2	1.069	71.6	LOS F	148.5	1059.6	1.00	0.86	1.95	25.6
9a	R1	930	19	979	2.0	0.793	7.2	LOS A	13.8	97.9	0.66	0.53	0.66	44.3
9u	U	60	0	63	0.0	0.793	9.5	LOS A	13.8	97.9	0.66	0.53	0.66	45.7
Approac	ch	2606	55	2743	2.1	1.069	47.2	LOS D	148.5	1059.6	0.87	0.73	1.46	30.2
SouthW	est: Tonga	riro St SW												
30a	L1	309	19	325	6.1	0.574	6.2	LOS A	4.2	30.6	0.79	0.94	0.95	28.9
32a	R1	59	0	62	0.0	0.574	8.5	LOS A	4.2	30.6	0.79	0.94	0.95	28.9
32u	U	1	0	1	0.0	0.574	9.8	LOS A	4.2	30.6	0.79	0.94	0.95	29.4
Approac	ch	369	19	388	5.1	0.574	6.5	LOS A	4.2	30.6	0.79	0.94	0.95	28.9
All Vehic	cles	3496	111	3680	3.2	1.069	42.8	LOS D	148.5	1059.6	0.88	0.88	1.54	30.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

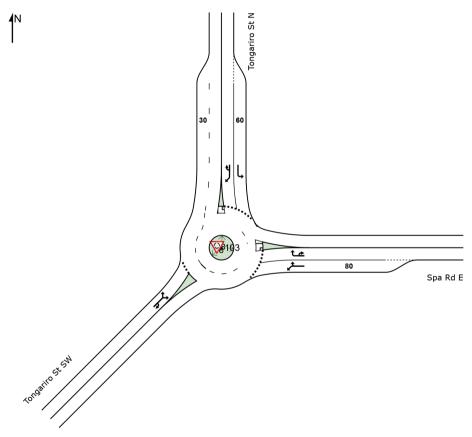
Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

▼ Site: 103 [Spa / Tongariro 2053 PM Base (Site Folder: 2053 Base Year)]

New Site

Site Category: (None)

Roundabout

▽ Site: 103 [Spa / Tongariro 2053 PM Base (Site Folder: 2053 Base Year)]

New Site

Site Category: (None)

Roundabout

Vehicle	Moveme	ent Perform	ance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Sp	a Rd E													
4a	L1	5	0	5	0.0	0.428	10.8	LOS B	2.8	20.2	0.79	0.96	0.88	41.2
6	R2	1531	28	1612	1.8	1.402	324.3	LOS F	265.9	1891.8	0.97	7.23	15.21	9.7
6u	U	1	1	1	100.0	1.402	387.7	LOS F	265.9	1891.8	1.00	8.40	17.87	8.2
Approac	ch	1537	29	1618	1.9	1.402	323.3	LOS F	265.9	1891.8	0.97	7.21	15.16	9.8
North: To	ongariro S	it N												
7	L2	796	30	838	3.8	0.488	4.5	LOS A	5.1	37.1	0.13	0.50	0.13	46.2
9a	R1	492	12	518	2.4	0.453	6.2	LOS A	4.4	31.4	0.13	0.58	0.13	45.2
9u	U	147	0	155	0.0	0.453	9.0	LOS A	4.4	31.4	0.13	0.58	0.13	46.5
Approac	:h	1435	42	1511	2.9	0.488	5.5	LOS A	5.1	37.1	0.13	0.54	0.13	45.9
SouthW	est: Tonga	riro St SW												
30a	L1	552	9	581	1.6	1.755	696.4	LOS F	173.3	1229.5	1.00	10.49	17.76	4.3
32a	R1	15	0	16	0.0	1.755	696.9	LOS F	173.3	1229.5	1.00	10.49	17.76	4.1
32u	U	1	0	1	0.0	1.755	698.3	LOS F	173.3	1229.5	1.00	10.49	17.76	3.7
Approac	ch	568	9	598	1.6	1.755	696.4	LOS F	173.3	1229.5	1.00	10.49	17.76	4.3
All Vehic	cles	3540	80	3726	2.3	1.755	254.3	LOS F	265.9	1891.8	0.63	5.03	9.48	11.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

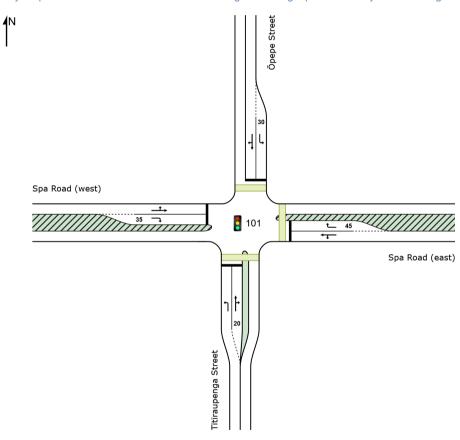
Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.


Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2053 AM Base (current 2023 phasing) (Site Folder:

2053 Base Year)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2053 AM Base (current 2023 phasing) (Site Folder: 2053 Base Year)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time) Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehicle	e Movem	ent Perform	ance											
Mov ID	Turn	INPUT V [Total	OLUMES HV]	DEMAND [Total	FLOWS HV]	Deg. Satn	Aver. Delay	Level of Service	95% BACK [Veh.	OF QUEUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec	Oct vice	veh	m m	Que	Otop Mate	Оуыса	km/h
South:	Tītīraupeng	ga Street												
1	L2	243	2	256	8.0	0.741	49.3	LOS D	13.6	96.1	0.92	0.85	1.00	31.1
2	T1	105	1	111	1.0	* 1.354	375.6	LOS F	20.8	146.5	1.00	1.75	3.31	13.2
3	R2	9	0	9	0.0	1.354	380.1	LOS F	20.8	146.5	1.00	1.75	3.31	28.3
Approac	ch	357	3	376	8.0	1.354	153.6	LOS F	20.8	146.5	0.95	1.14	1.73	20.5
East: S	pa Road (e	east)												
4	L2	54	2	57	3.7	1.313	345.9	LOS F	116.1	853.2	1.00	2.43	3.00	29.7
5	T1	599	36	631	6.0	* 1.313	339.6	LOS F	116.1	853.2	1.00	2.43	3.00	29.5
6	R2	201	2	212	1.0	1.001	109.0	LOS F	18.1	127.4	1.00	1.16	1.77	41.8
Approac	ch	854	40	899	4.7	1.313	285.7	LOS F	116.1	853.2	1.00	2.13	2.71	31.9
North: C	Dpepe Stre	et												
7	L2	53	2	56	3.8	* 0.231	35.6	LOS D	2.2	15.7	0.93	0.74	0.93	47.0
8	T1	72	1	76	1.4	0.194	42.3	LOS D	3.8	26.7	0.86	0.68	0.86	38.4
9	R2	2	0	2	0.0	0.194	46.9	LOS D	3.8	26.7	0.86	0.68	0.86	37.7
Approac	ch	127	3	134	2.4	0.231	39.6	LOS D	3.8	26.7	0.89	0.70	0.89	44.4
West: S	pa Road (west)												
10	L2	3	0	3	0.0	1.303	336.6	LOS F	130.7	949.5	1.00	2.45	2.95	14.0
11	T1	738	33	777	4.5	1.303	330.2	LOS F	130.7	949.5	1.00	2.45	2.95	29.9
12	R2	225	2	237	0.9	* 1.322	355.0	LOS F	39.7	279.7	1.00	1.78	3.14	9.1
Approac	ch	966	35	1017	3.6	1.322	336.0	LOS F	130.7	949.5	1.00	2.29	3.00	27.0
All Vehi	cles	2304	81	2425	3.5	1.354	272.8	LOS F	130.7	949.5	0.99	1.97	2.58	29.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	strian Move	ment Perform	ance									
Mov ID	Crossing	Input Vol.	Dem. Flow ped/h	Aver. Delay sec	Level of Service	AVERAGE BAC [Ped	Dist]	Prop. Que	Effective Tr Stop Rate	avel Time sec		Aver. Speed m/sec
South	ı: Tītīraupenga		реалт	360		ped	m			366	m	111/366
P1	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	230.3	228.8	0.99
East:	Spa Road (eas	st)										
P2	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	221.0	216.8	0.98
North	: Ōpepe Street	i										
P3	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	218.8	213.9	0.98
All Pe	edestrians	150	158	54.3	LOS E	0.2	0.2	0.95	0.95	223.4	219.8	0.98

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 3:05:35 pm

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2053 AM Base (current 2023 phasing) (Site Folder:

2053 Base Year)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

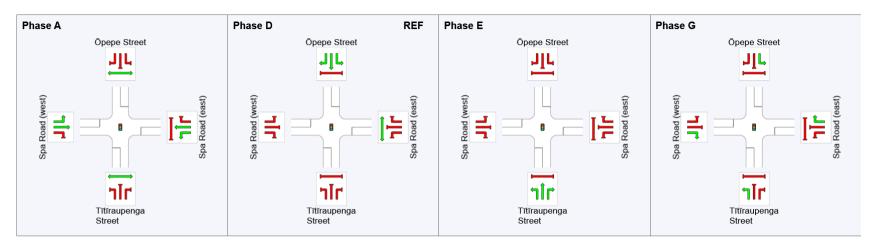
Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program Phase Sequence: Leading Right Turn

Reference Phase: Phase D

Input Phase Sequence: A, D, E, G, G1*, G2*

Output Phase Sequence: A, D, E, G


(* Variable Phase)

Phase Timing Summary

Phase	Α	D	E	G
Phase Change Time (sec)	67	0	31	43
Green Time (sec)	47	25	6	18
Phase Time (sec)	53	31	12	24
Phase Split	44%	26%	10%	20%

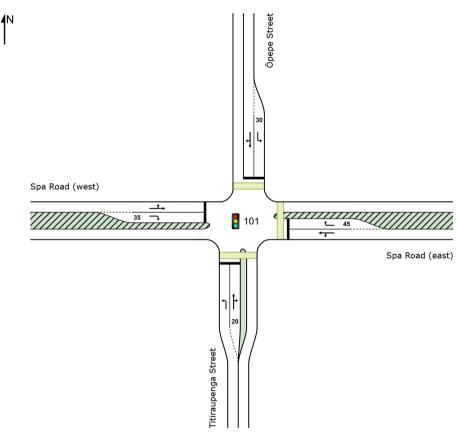
See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 3:05:35 pm
Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9


Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2053 PM Base (current 2023 phasing) (Site Folder:

2053 Base Year)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2053 PM Base (current 2023 phasing) (Site Folder: 2053 Base Year)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehicle	Moveme	ent Perform	nance											
Mov ID	Turn	INPUT V [Total	OLUMES HV]	DEMAND [Total	FLOWS HV]	Deg. Satn	Aver. Delay	Level of Service	95% BACK [Veh.	OF QUEUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South:	Tītīraupeng	ga Street												
1	L2	140	1	147	0.7	0.383	44.1	LOS D	7.1	49.7	0.86	0.77	0.86	32.4
2	T1	48	1	51	2.1	* 0.650	65.5	LOS E	3.9	27.6	1.00	0.80	1.12	34.0
3	R2	11	0	12	0.0	0.650	70.1	LOS E	3.9	27.6	1.00	0.80	1.12	44.2
Approac	ch	199	2	209	1.0	0.650	50.7	LOS D	7.1	49.7	0.90	0.78	0.94	35.1
East: S	pa Road (e	east)												
4	L2	76	1	80	1.3	1.476	486.5	LOS F	182.7	1315.6	1.00	2.88	3.57	25.5
5	T1	788	28	829	3.6	* 1.476	480.3	LOS F	182.7	1315.6	1.00	2.88	3.57	25.3
6	R2	29	1	31	3.4	0.112	52.6	LOS D	1.6	11.3	0.90	0.72	0.90	45.6
Approac	ch	893	30	940	3.4	1.476	466.9	LOS F	182.7	1315.6	1.00	2.81	3.49	25.7
North: C	Dpepe Stre	eet												
7	L2	54	1	57	1.9	* 0.233	35.6	LOS D	2.2	15.7	0.93	0.74	0.93	47.0
8	T1	112	1	118	0.9	0.300	43.4	LOS D	6.0	42.5	0.89	0.71	0.89	38.2
9	R2	3	0	3	0.0	0.300	48.0	LOS D	6.0	42.5	0.89	0.71	0.89	37.4
Approac	ch	169	2	178	1.2	0.300	41.0	LOS D	6.0	42.5	0.90	0.72	0.90	43.5
West: S	pa Road (west)												
10	L2	11	0	12	0.0	1.053	130.8	LOS F	72.9	529.3	1.00	1.51	1.77	25.5
11	T1	667	29	702	4.3	1.053	124.4	LOS F	72.9	529.3	1.00	1.51	1.77	40.0
12	R2	70	0	74	0.0	0.265	54.0	LOS D	3.9	27.2	0.93	0.76	0.93	30.0
Approac	ch	748	29	787	3.9	1.053	117.9	LOS F	72.9	529.3	0.99	1.44	1.69	39.7
All Vehi	cles	2009	63	2115	3.1	1.476	259.9	LOS F	182.7	1315.6	0.98	1.92	2.35	30.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance												
Mov ID	Crossing	Input Vol.	Dem. Flow ped/h	Aver. Delay sec	Level of Service	AVERAGE BAC [Ped ped	Dist]	Prop. Que	Effective Tra Stop Rate	avel Time T sec		Aver. Speed m/sec
South	n: Tītīraupenga		речлі	360		ped	m			<u> </u>	m m	III/SCC
P1	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	230.3	228.8	0.99
East:	Spa Road (eas	st)										
P2	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	221.0	216.8	0.98
North	: Ōpepe Street	i										
P3	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	218.8	213.9	0.98
All Pe	edestrians	150	158	54.3	LOS E	0.2	0.2	0.95	0.95	223.4	219.8	0.98

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 3:05:00 pm

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2053 PM Base (current 2023 phasing) (Site Folder:

2053 Base Year)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

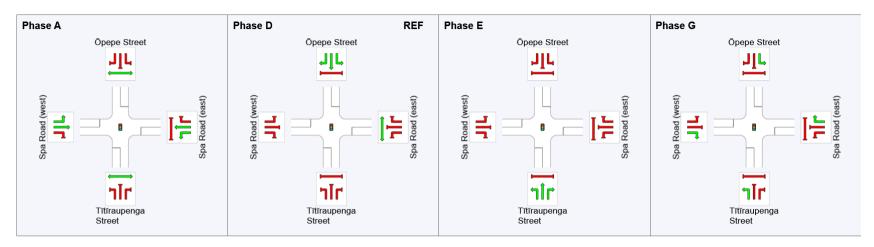
Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program Phase Sequence: Leading Right Turn

Reference Phase: Phase D

Input Phase Sequence: A, D, E, G, G1*, G2*

Output Phase Sequence: A, D, E, G


(* Variable Phase)

Phase Timing Summary

Phase	Α	D	E	G
Phase Change Time (sec)	67	0	31	43
Green Time (sec)	47	25	6	18
Phase Time (sec)	53	31	12	24
Phase Split	44%	26%	10%	20%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase



SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 3:05:00 pm
Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2053 AM Base (Site Folder: 2053 Base Year)]

New Site Site Category: (None) Stop (Two-Way)

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2053 AM Base (Site Folder: 2053 Base Year)]

New Site

Site Category: (None) Stop (Two-Way)

Vehicl	e Movem	ent Perform	nance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	Tītīraupenç	ga Street (sou	uth)											
1	L2	141	2	148	1.4	0.336	4.8	LOS A	0.2	1.3	0.04	0.13	0.04	40.2
2	T1	455	2	479	0.4	0.336	0.1	LOS A	0.2	1.3	0.04	0.13	0.04	48.6
3	R2	10	0	11	0.0	0.336	6.8	LOS A	0.2	1.3	0.04	0.13	0.04	47.0
Approa	ch	606	4	638	0.7	0.336	1.3	NA	0.2	1.3	0.04	0.13	0.04	46.4
East: P	āora Hapi (Street (east)												
4	L2	23	0	24	0.0	0.146	9.3	LOS A	0.5	3.4	0.64	0.97	0.64	37.4
5	T1	27	0	28	0.0	0.146	19.2	LOS C	0.5	3.4	0.64	0.97	0.64	29.1
6	R2	5	0	5	0.0	0.146	18.3	LOS C	0.5	3.4	0.64	0.97	0.64	34.8
Approa	ch	55	0	58	0.0	0.146	15.0	LOS C	0.5	3.4	0.64	0.97	0.64	33.1
North:	Γītīraupeng	ja Street (nor	th)											
7	L2	4	0	4	0.0	0.235	8.0	LOS A	0.4	2.9	0.12	0.04	0.12	47.6
8	T1	374	5	394	1.3	0.235	0.4	LOS A	0.4	2.9	0.12	0.04	0.12	48.9
9	R2	25	0	26	0.0	0.235	8.2	LOS A	0.4	2.9	0.12	0.04	0.12	37.9
Approa	ch	403	5	424	1.2	0.235	1.0	NA	0.4	2.9	0.12	0.04	0.12	48.2
West: F	Pāora Hapi	Street (west)												
10	L2	23	0	24	0.0	1.052	97.5	LOS F	19.8	140.2	1.00	3.51	6.36	11.0
11	T1	21	0	22	0.0	1.052	107.3	LOS F	19.8	140.2	1.00	3.51	6.36	10.5
12	R2	213	4	224	1.9	1.052	112.2	LOS F	19.8	140.2	1.00	3.51	6.36	12.8
Approa	ch	257	4	271	1.6	1.052	110.5	LOS F	19.8	140.2	1.00	3.51	6.36	12.5
All Vehi	cles	1321	13	1391	1.0	1.052	23.0	NA	19.8	140.2	0.27	0.80	1.32	30.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

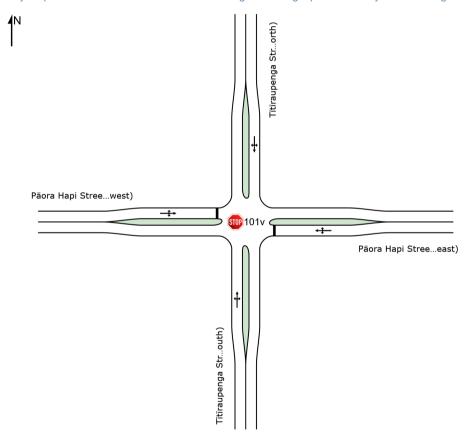
Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 7:54:56 am

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2053 PM Base (Site Folder: 2053 Base Year)]

New Site Site Category: (None) Stop (Two-Way)

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2053 PM Base (Site Folder: 2053 Base Year)]

New Site

Site Category: (None) Stop (Two-Way)

Vehicle	e Movem	ent Perform	nance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	Γītīraupen	ga Street (sou	uth)											
1	L2	112	1	118	0.9	0.184	4.7	LOS A	0.1	1.0	0.05	0.19	0.05	39.7
2	T1	206	1	217	0.5	0.184	0.1	LOS A	0.1	1.0	0.05	0.19	0.05	47.9
3	R2	10	0	11	0.0	0.184	6.0	LOS A	0.1	1.0	0.05	0.19	0.05	46.3
Approac	ch	328	2	345	0.6	0.184	1.9	NA	0.1	1.0	0.05	0.19	0.05	44.8
East: Pa	āora Hapi :	Street (east)												
4	L2	12	0	13	0.0	0.084	8.9	LOS A	0.3	2.0	0.53	0.98	0.53	39.6
5	T1	26	0	27	0.0	0.084	12.4	LOS B	0.3	2.0	0.53	0.98	0.53	30.9
6	R2	8	0	8	0.0	0.084	12.4	LOS B	0.3	2.0	0.53	0.98	0.53	37.2
Approa	ch	46	0	48	0.0	0.084	11.5	LOS B	0.3	2.0	0.53	0.98	0.53	34.3
North: T	ītīraupeng	ga Street (nor	th)											
7	L2	7	0	7	0.0	0.199	5.8	LOS A	0.3	2.1	0.10	0.06	0.10	47.8
8	T1	317	1	334	0.3	0.199	0.2	LOS A	0.3	2.1	0.10	0.06	0.10	49.0
9	R2	28	0	29	0.0	0.199	6.0	LOS A	0.3	2.1	0.10	0.06	0.10	38.0
Approa	ch	352	1	371	0.3	0.199	8.0	NA	0.3	2.1	0.10	0.06	0.10	48.1
West: P	āora Hapi	Street (west))											
10	L2	26	0	27	0.0	0.769	14.1	LOS B	6.5	45.5	0.81	1.59	1.95	26.1
11	T1	22	0	23	0.0	0.769	19.9	LOS C	6.5	45.5	0.81	1.59	1.95	25.2
12	R2	286	2	301	0.7	0.769	22.0	LOS C	6.5	45.5	0.81	1.59	1.95	28.3
Approac	ch	334	2	352	0.6	0.769	21.2	LOS C	6.5	45.5	0.81	1.59	1.95	28.0
All Vehi	cles	1060	5	1116	0.5	0.769	8.0	NA	6.5	45.5	0.33	0.62	0.68	38.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

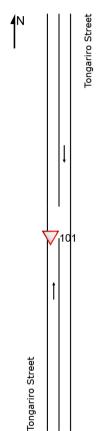
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.


SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 7:54:57 am

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

▽ Site: 101 [TCG Bridge 2053 AM (Site Folder: 2053 Base Year)]

New Site

Site Category: (None) Give-Way (Two-Way)

▽ Site: 101 [TCG Bridge 2053 AM (Site Folder: 2053 Base Year)]

New Site

Site Category: (None) Give-Way (Two-Way)

Vehicle	Movem	ent Perform	ance											
Mov ID	Turn	INPUT V0 [Total veh/h	DLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: T	South: Tongariro Street													
2	T1	691	5.0	727	5.0	0.385	4.3	LOS A	0.0	0.0	0.00	0.53	0.00	54.5
Approac	h	691	5.0	727	5.0	0.385	4.3	NA	0.0	0.0	0.00	0.53	0.00	54.5
North: To	ongariro S	treet												
8	T1	2687	5.0	2828	5.0	1.498	229.0	LOS F	0.0	0.0	0.00	0.00	0.00	7.1
Approac	:h	2687	5.0	2828	5.0	1.498	229.0	NA	0.0	0.0	0.00	0.00	0.00	7.1
All Vehic	cles	3378	5.0	3556	5.0	1.498	183.1	NA	0.0	0.0	0.00	0.11	0.00	8.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

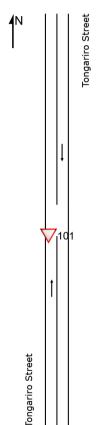
Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 7:54:58 am

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

▽ Site: 101 [TCG Bridge 2053 PM (Site Folder: 2053 Base Year)]

New Site

Site Category: (None) Give-Way (Two-Way)

▽ Site: 101 [TCG Bridge 2053 PM (Site Folder: 2053 Base Year)]

New Site

Site Category: (None) Give-Way (Two-Way)

Vehicle	Movemo	ent Perform	ance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: T	ongariro S	Street												
2	T1	2660	5.0	2800	5.0	1.483	222.1	LOS F	0.0	0.0	0.00	0.00	0.00	7.3
Approac	ch	2660	5.0	2800	5.0	1.483	222.1	NA	0.0	0.0	0.00	0.00	0.00	7.3
North: T	ongariro S	treet												
8	T1	1354	5.0	1425	5.0	0.755	4.7	LOS A	0.0	0.0	0.00	0.52	0.00	53.9
Approac	ch	1354	5.0	1425	5.0	0.755	4.7	NA	0.0	0.0	0.00	0.52	0.00	53.9
All Vehic	cles	4014	5.0	4225	5.0	1.483	148.8	NA	0.0	0.0	0.00	0.18	0.00	10.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

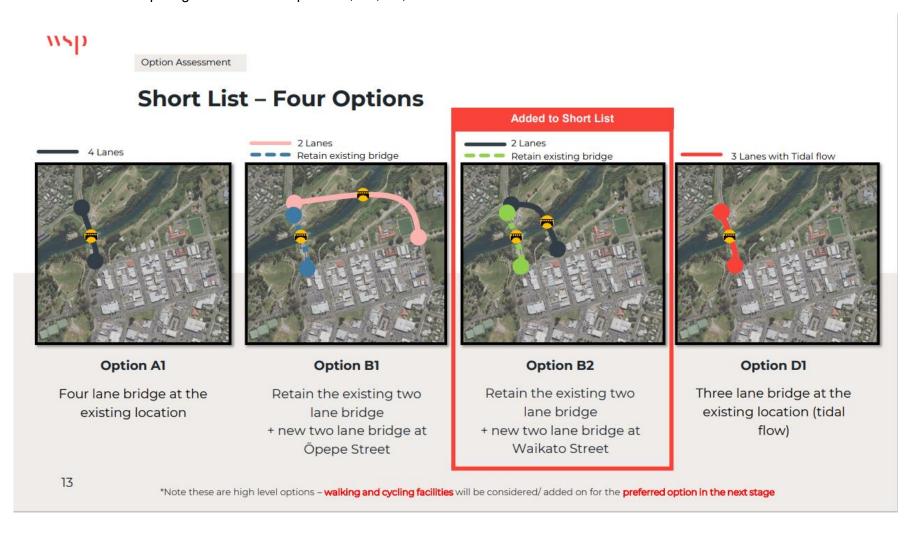
Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 7:54:59 am

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9


APPENDIX C

TAUPŌ TRANSPORT MODEL: OPTIONS A1 TO D1 RESULTS

Note: Where it says 2053, this references 2053+ (Full Development Scenario).

1. Option Descriptions

This set of model outputs gives results for option A1, B1, B2, D1 as described below

2. Volume Plots

Figure 2.1 2033 Base Morning Peak Hour Volume Plot

Figure 2.2 2033 Base Evening Peak Hour Volume Plot

Figure 2.3 2033 Option A1 Morning Peak Hour Plot

Figure 2.4 2033 Option A1 Evening Peak Hour Volume Plot

WNZL-J020 23/02/2024 6

Figure 2.5 2033 Option B1 Morning Peak Hour Volume Plot

WNZL-J020 23/02/2024 7

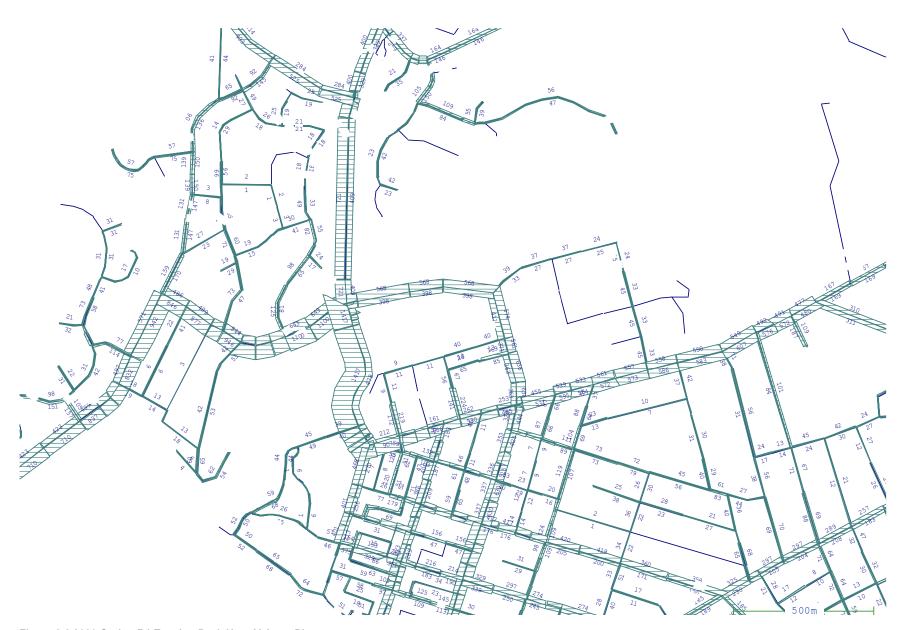


Figure 2.6 2033 Option B1 Evening Peak Hour Volume Plot

Figure 2.7 2033 Option B2 Morning Peak Hour Volume Plot

Figure 2.8 2033 Option B2 Evening Peak Hour Volume Plot

Figure 2.9 2033 Option D1 Morning Peak Hour Volume Plot

Figure 2.10 2033 Option D1 Evening Peak Hour Volume Plot

Figure 2.11 2053 Base Morning Peak Hour Volume Plot

Figure 2.12 2053 Base Evening Peak Hour Volume Plot

Figure 2.13 2053 Option A1 Morning Peak Hour Volume Plot

Figure 2.14 Option A1 Evening Peak Hour Volume Plot

Figure 2.15 2053 Option B1 Morning Peak Hour Volume Plot

Figure 2.16 2053 Option B1 Evening Peak Hour Volume Plot

Figure 2.17 2053 Option B2 Morning Peak Hour Volume Plot

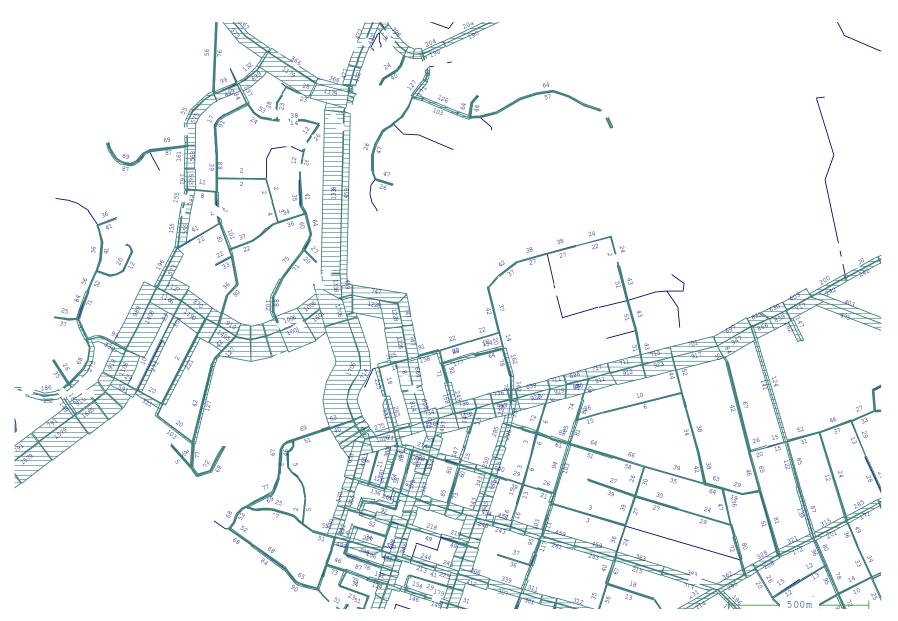


Figure 2.18 2053 Option B2 Evening Peak Hour Volume Plot

Figure 2.19 Option D1 Morning Peak Hour Volume Plot

Figure 2.20 Option D1 Evening Peak Hour Volume Plot

3. Volume Change to Baseline Plots

Figure 3.1 2033 Option A1 Morning Peak Hour Volume Change Plot WNZL-J020

Figure 3.2 2033 Option A1 Evening Peak Hour Volume Change Plot WNZL-J020

Figure 3.3 2033 Option B1 Morning Peak Hour Volume Change Plot $\mathsf{WNZL}\text{-}\mathsf{J}020$



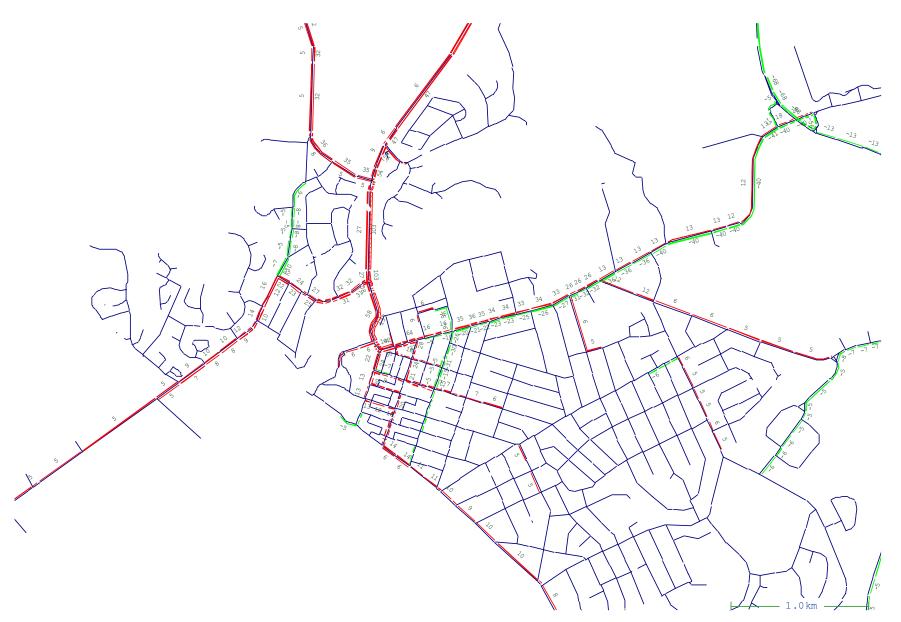

Figure 3.4 2033 Option B1 Evening Peak Hour Volume Change Plot WNZL-J020

Figure 3.5 2033 Option B2 Morning Peak Hour Volume Change Plot $\mathsf{WNZL}\text{-}\mathsf{J}020$

Figure 3.6 2033 Option B2 Evening Peak Hour Volume Change Plot WNZL-J020

Figure 3.7 2033 Option D1 Morning Peak Hour Volume Change Plot WNZL-J020

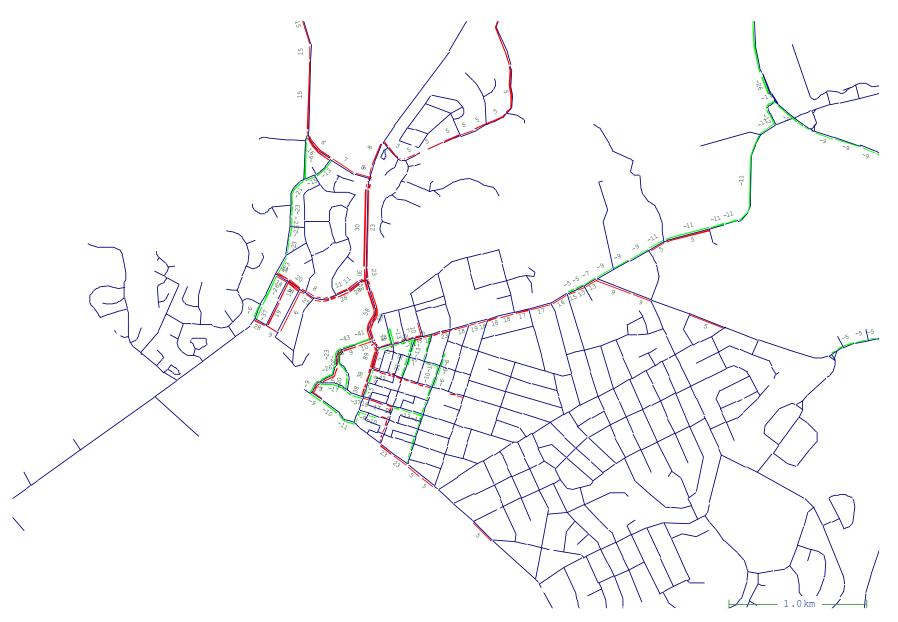

23/02/2024 30

Figure 3.8 Option D1 Evening Peak Hour Volume Change Plot

Figure 3.9 2053 Option A1 Morning Peak Hour Volume Change Plot WNZL-J020

Figure 3.10 2053 Option A1 Evening Peak Hour Volume Change Plot WNZL-J020

Figure 3.11 2053 Option B1 Morning Peak Hour Volume Change Plot WNZL-J020

Figure 3.12 2053 Option B1 Evening Peak Hour Volume Change Plot WNZL-J020

Figure 3.13 2053 Option B2 Morning Peak Hour Volume Change Plot WNZL-J020

Figure 3.14 2053 Option B2 Evening Peak Hour Volume Change Plot WNZL-J020

Figure 3.15 2053 Option D1 Morning Peak Hour Volume Change Plot WNZL-J020

Figure 3.16 2053 Option D1 Evening Peak Hour Volume Change Plot WNZL-J020

4. Level of Service Plots



Figure 4.1 2033 Base Morning Peak Hour Level of Service Plot

Figure 4.2 2033 Base Evening Peak Hour Level of Service Plot

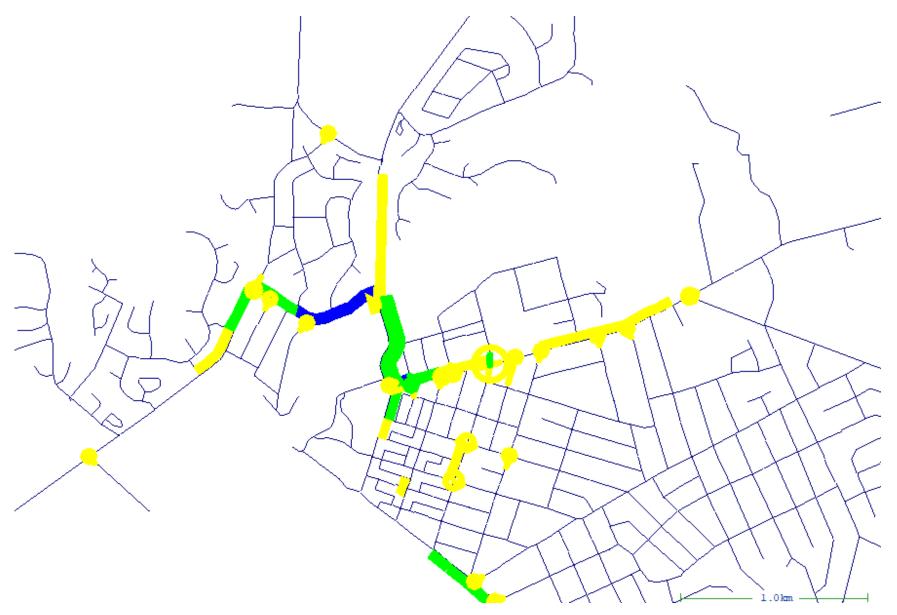


Figure 4.3 2033 Option A1 Morning Peak Hour Level of Service Plot

Figure 4.4 2033 Option A1 Evening Peak Hour Level of Service Plot

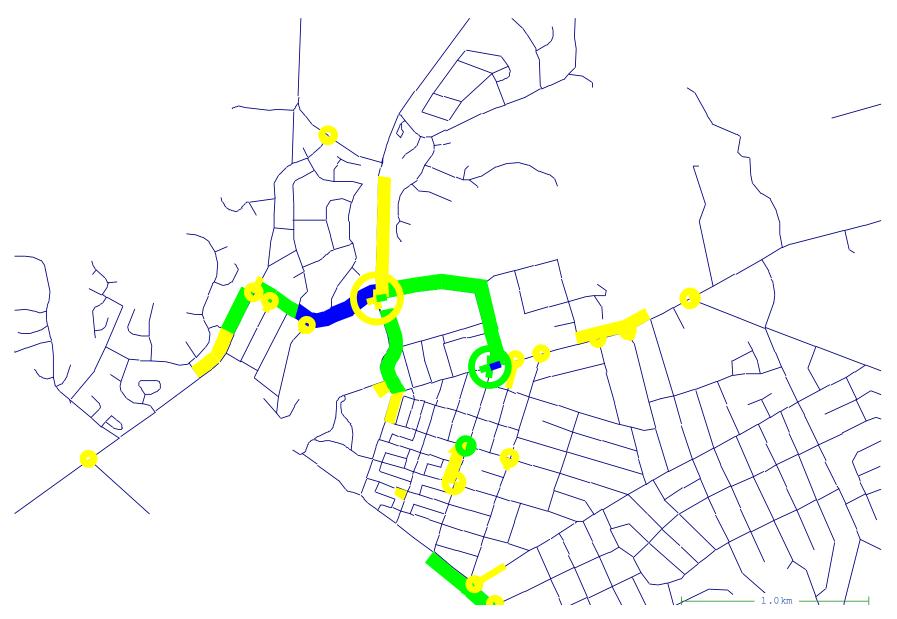


Figure 4.5 2033 Option B1 Morning Peak Hour Level of Service Plot

Figure 4.6 2033 Option B1 Evening Peak Hour Level of Service Plot

Figure 4.7 2033 Option B2 Morning Peak Hour Level of Service Plot

Figure 4.8 2033 Option B2 Evening Peak Hour Level of Service Plot



Figure 4.9 2033 Option D1 Morning Peak Hour Level of Service Plot

Figure 4.10 2033 Option D1 Evening Peak Hour Level of Service Plot

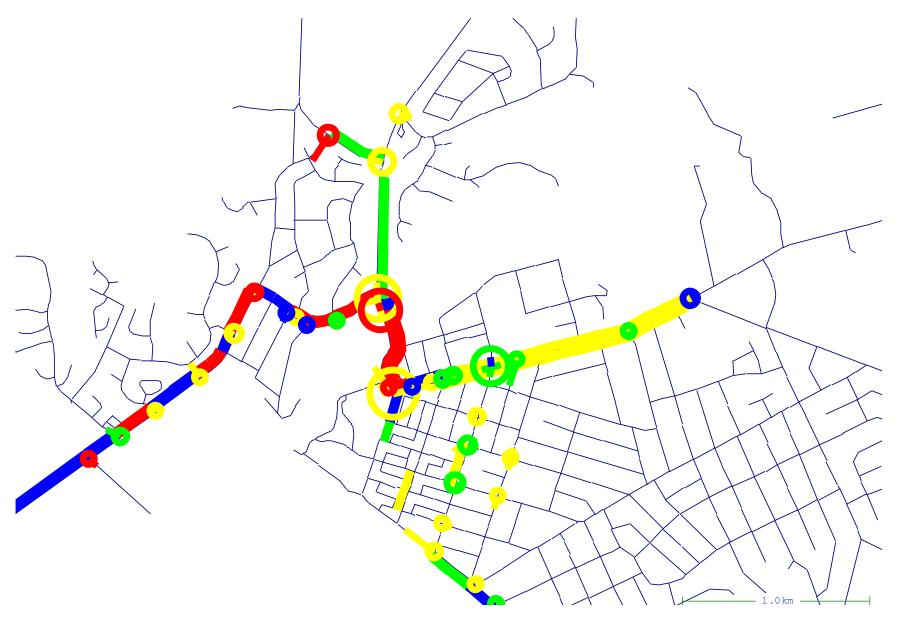


Figure 4.11 2053 Base Morning Peak Hour Level of Service Plot

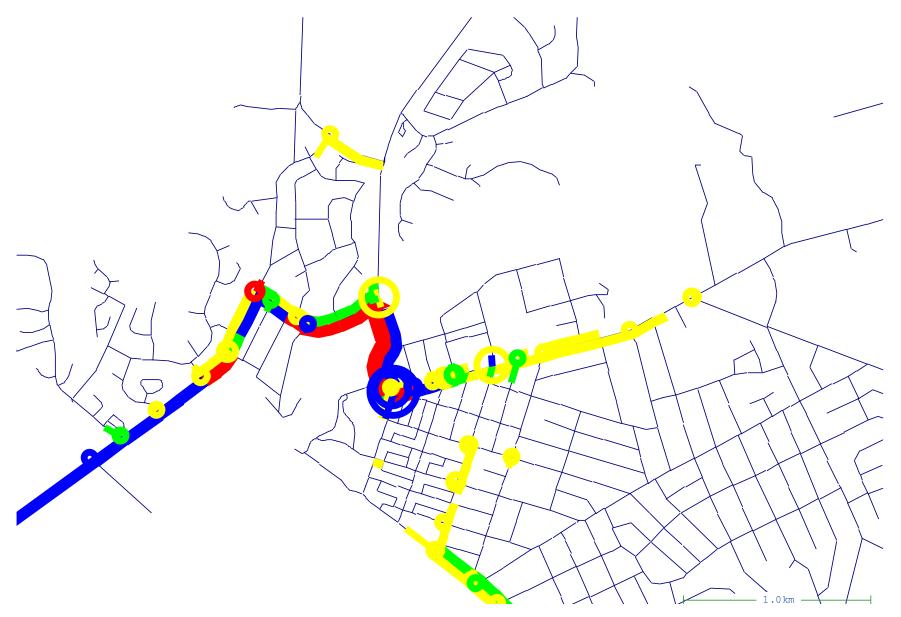


Figure 4.12 2053 Base Evening Peak Hour Level of Service Plot

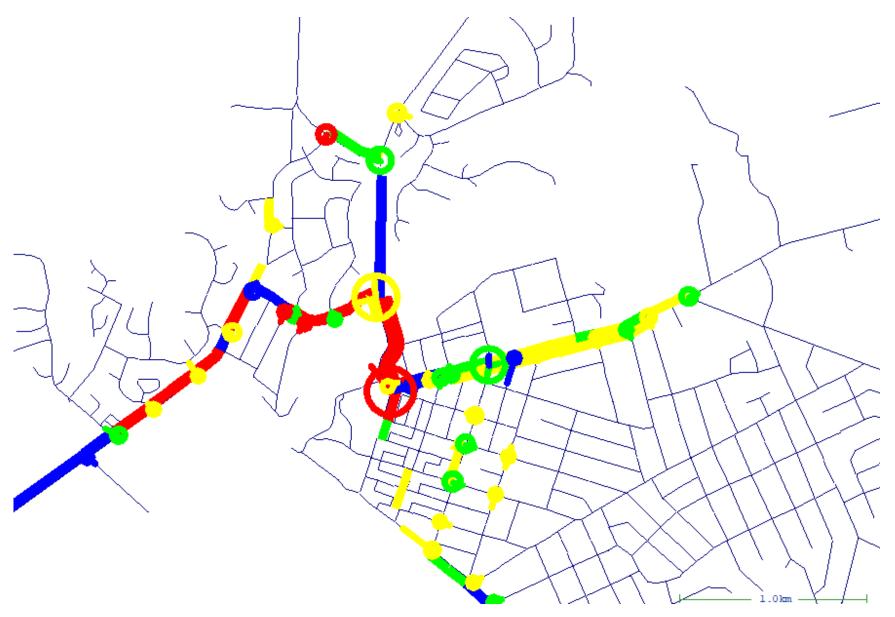


Figure 4.13 2053 Option A1 Morning Peak Hour Level of Service Plot

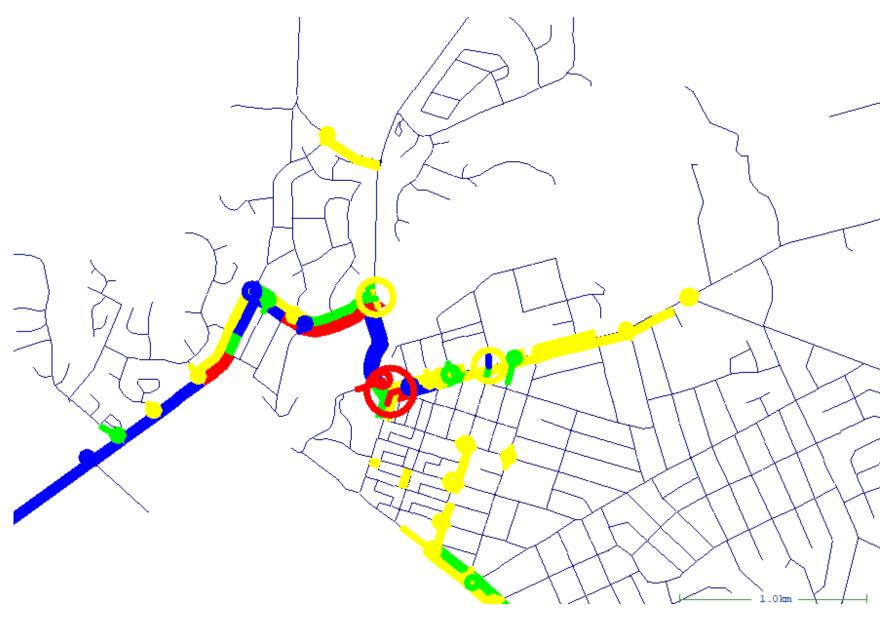
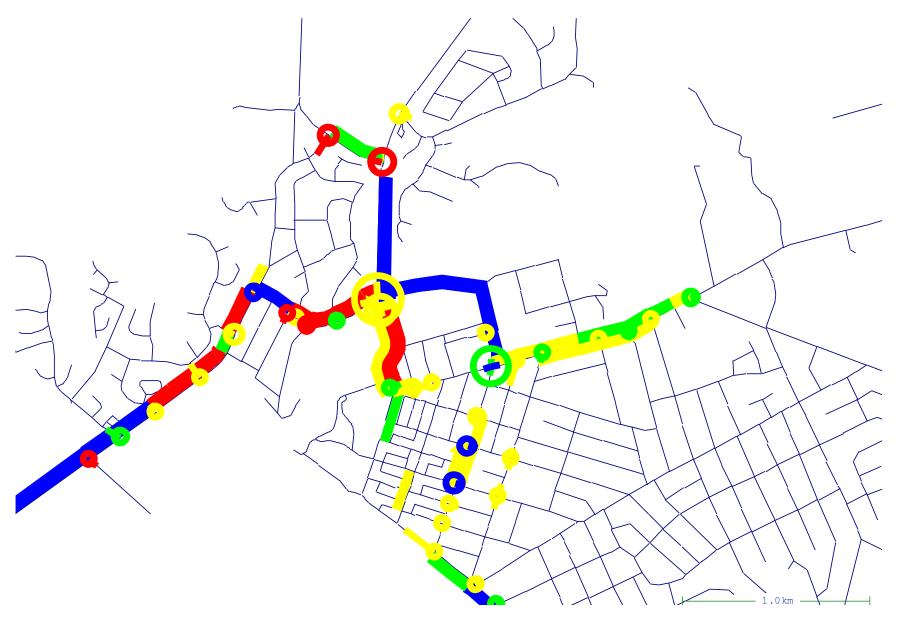



Figure 4.14 2053 Option A1 Evening Peak Hour Level of Service Plot

WNZL-J020 23/02/2024 54

Figure 4.15 2053 Option B1 Morning Peak Hour Level of Service Plot WNZL-J020

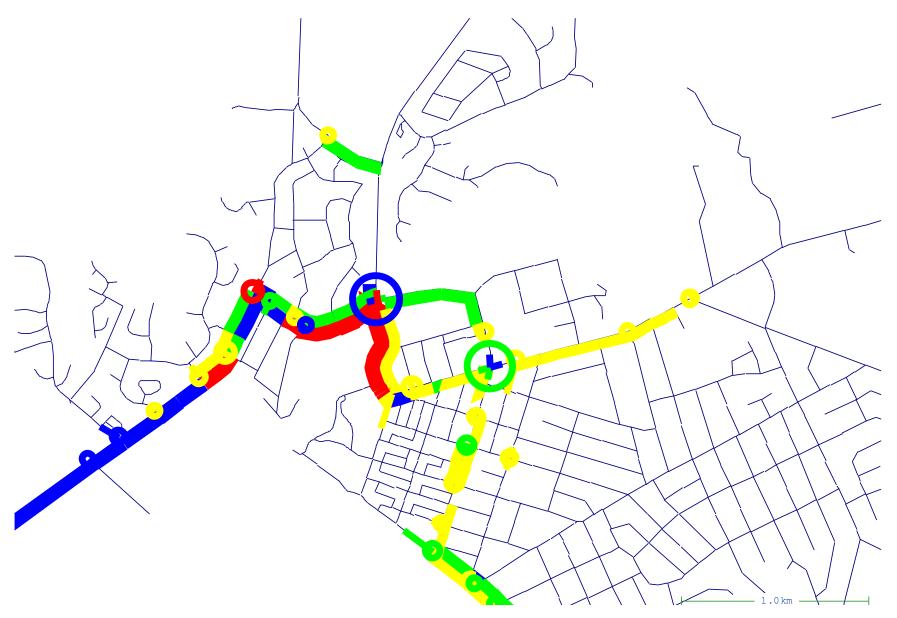



Figure 4.16 2053 Option B1 Evening Peak Hour Level of Service Plot WNZL-J020

Figure 4.17 2053 Option B2 Morning Peak Hour Level of Service Plot WNZL-J020

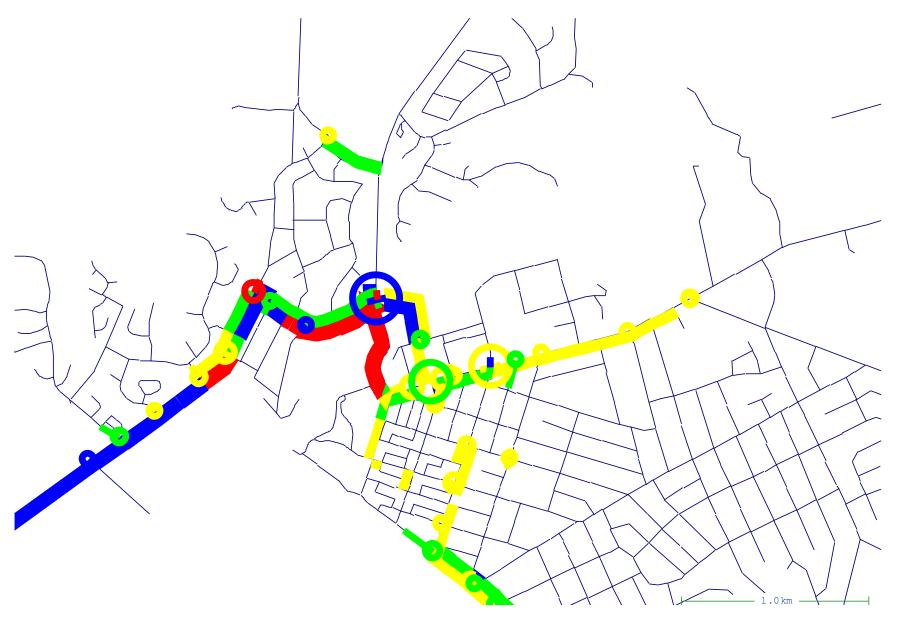


Figure 4.18 2053 Option B2 Evening Peak Hour Level of Service Plot WNZL-J020

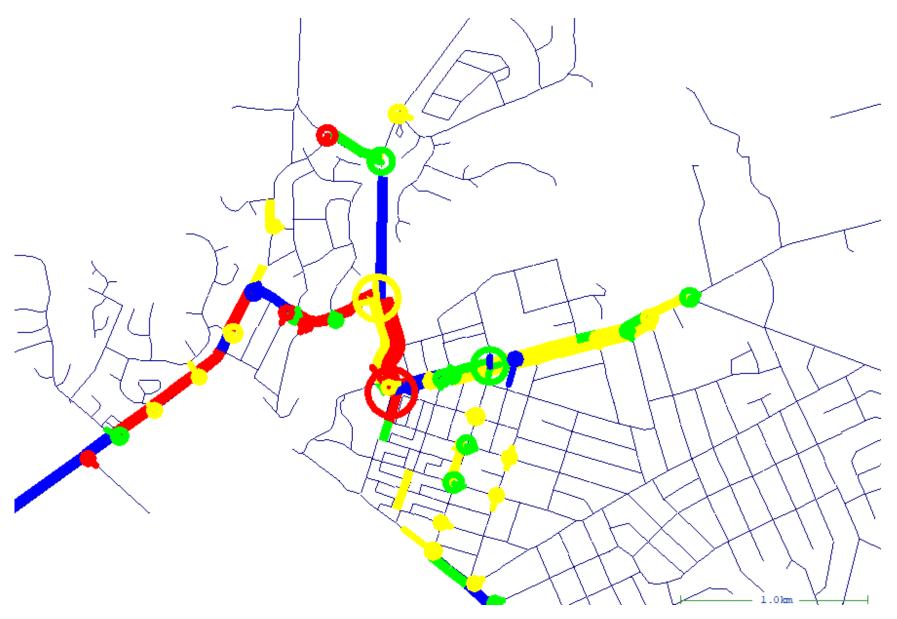


Figure 4.19 2053 Option D1 Morning Peak Hour Level of Service Plot

WNZL-J020 23/02/2024 59

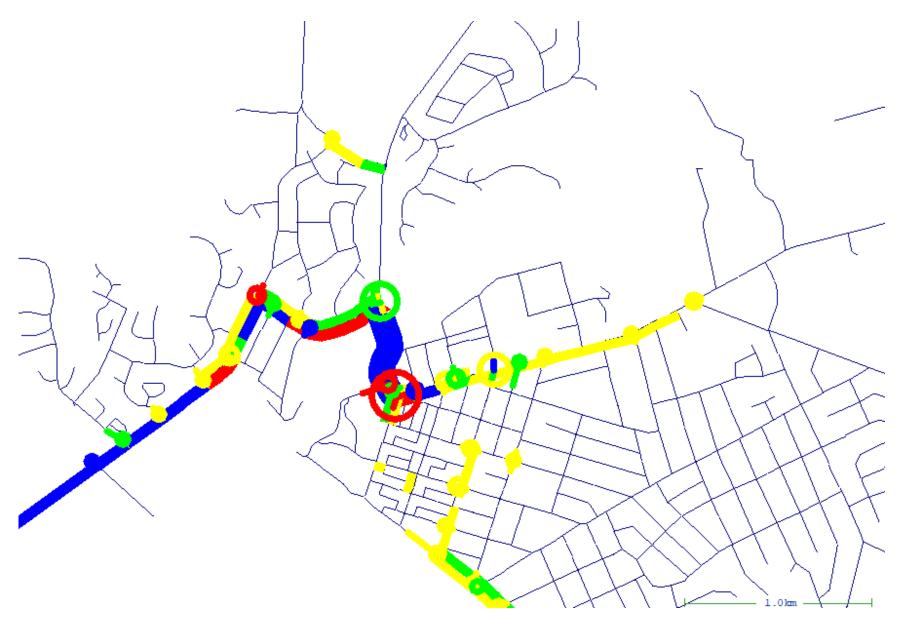
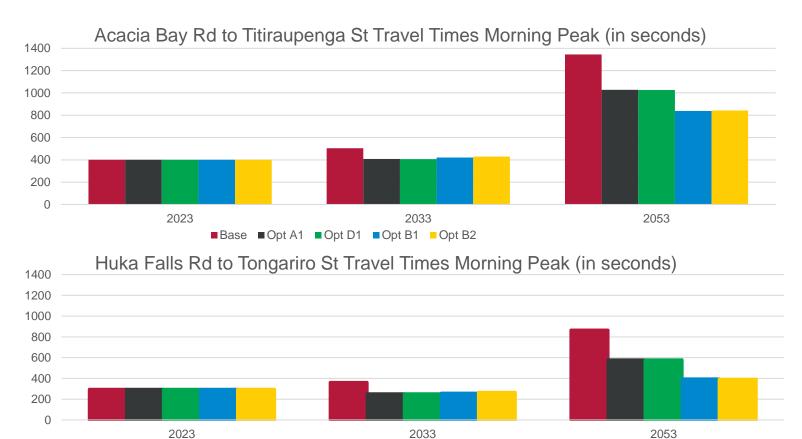


Figure 4.20 2053 Option D1 Evening Peak Hour Level of Service Plot

WNZL-J020 23/02/2024 60

5. Level of Service Summary

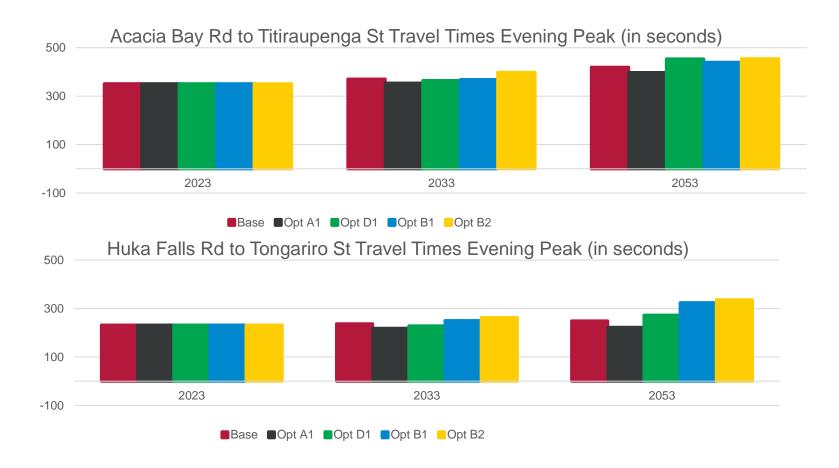

Table 5.1 Number of Intersections at given LoS

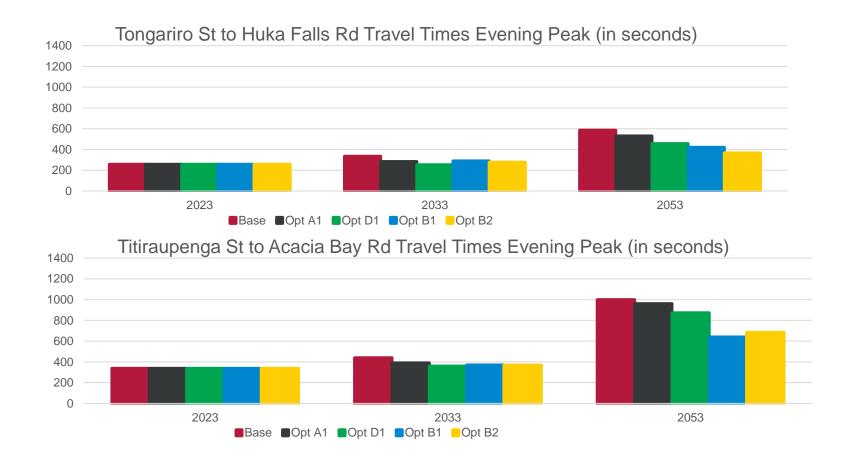
		23 Base	33 Base	33 Opt A1	33 Opt B1	33 Opt B2	33 Opt D1	53 Base	53 Opt A1	53 Opt B1	53 Opt B2	53 Opt D1
AM	LoS C	40	47	47	43	46	47	45	45	47	48	45
	LoS D	1	0	1	2	1	1	14	16	13	14	16
	LoS E	1	4	2	2	2	2	6	6	4	5	5
	LoS F	1	2	2	2	2	2	7	6	8	6	7
PM	LoS C	28	41	39	36	38	40	49	47	43	45	45
	LoS D	1	1	1	2	2	1	10	10	11	13	12
	LoS E	0	1	1	1	1	1	6	5	5	3	4
	LoS F	0	1	1	1	1	1	2	3	2	3	4

Table 5.2 Lane Kilometres at given LoS

		23 Base	33 Base	33 Opt A1	33 Opt B1	33 Opt B2	33 Opt D1	53 Base	53 Opt A1	53 Opt B1	53 Opt B2	53 Opt D1
AM	LoS C	3.5	2	3.2	2.6	3.4	3.6	4.8	5.1	5.2	5.3	5.4
	LoS D	0.5	3.2	4.1	4.1	3.3	4.1	3.2	3	3.3	3.5	3.1
	LoS E	0.5	0.5	0.6	0.5	0.5	0.6	4.2	4.3	5.1	4.9	4.3
-	LoS F	0	0.5	0	0	0	0	1.8	2.8	1.7	1.7	2.8
PM	LoS C	2.2	2.8	3.5	2.8	3.4	3.9	6	6.3	5.7	6	5.6
	LoS D	0.4	2	1.7	1.3	2	2.2	3	3.3	4	3.9	3.3
	LoS E	0.4	0.4	0.4	0.7	0.2	0.4	4.6	4.9	4.4	4.7	5.7
-	LoS F	0.1	0.5	0.1	0	0	0	1.4	0.9	1.2	1.2	0.9

6. Travel Times


■Base ■Opt A1 ■Opt D1 ■Opt B1 ■Opt B2


Tongariro St to Huka Falls Rd Travel Times Morning Peak (in seconds)

Titiraupenga St to Acacia Bay Rd Travel Times Morning Peak (in seconds)

7. Travel Totals

		2023	2033	2033 Opt A1	2033 Opt D1	2033 Opt B1	2033 Opt B2	2053	2053 Opt A1	2053 Opt D1	2053 Opt B1	2053 Opt B2
Morning	Trips Total	12830	15011	15011	15011	15011	15011	20233	20233	20233	20233	20233
Peak Hour	Vehicle Minutes	88313	112193	109352	109380	109626	109731	198565	186474	186591	179569	179611
	Vehicle Kilometres	76344	94009	94483	94457	94267	94224	126541	127053	127039	127661	127423
	Ave Trip Length (min)	6.88	7.47	7.28	7.29	7.3	7.31	9.81	9.22	9.22	8.88	8.88
	Ave Trip Length (km)	5.95	6.26	6.29	6.29	6.28	6.28	6.25	6.28	6.28	6.31	6.3
Evening	Trips Total	12028	13784	13784	13784	13784	13784	18599	18599	18599	18599	18599
Peak Hour	Vehicle Minutes	69905	85843	84461	83800	84544	83779	151428	149134	147214	140533	139399
	Vehicle Kilometres	57142	68103	68363	68455	68264	68355	94964	95051	95133	95909	95738
	Ave Trip Length (min)	5.81	6.23	6.13	6.08	6.13	6.08	8.14	8.02	7.92	7.56	7.49
	Ave Trip Length (km)	4.75	4.94	4.96	4.97	4.95	4.96	5.11	5.11	5.11	5.16	5.15

Level of Service Methodology

Level of Service (LoS) gives an indicator for the degree of amenity to vehicle users on a network. In the context of this report, LoS is used as an indicator of network performance.

Figure 7.1 shows how Link LoS varies depending on link type. It shows that the higher the vehicle volume and the lower the free speed the worse the LoS becomes. Link types are defined as follows:

- Link type 1 equates to road speeds of 10km/hr
- Link type 2 and 12 equate to road speeds of 20km/hr and 25km/hr
- Link type 3 and 13 equate to road speeds of 30km/hr and 35km/hr
- Link type 4 and 14 equate to road speeds of 40km/hr and 45km/hr
- Link type 5 and 15 equate to road speeds of 50km/hr and 55km/hr
- Link type 6 and 16 equate to road speeds of 60km/hr and 65km/hr
- Link type 7 and 17 equate to road speeds of 70km/hr and 75km/hr
- Link type 8 and 18 equate to road speeds of 80km/hr and 85km/hr
- Link type 9 and 19 equate to road speeds of 90km/hr and 95km/hr
- Link type 10 and 11 equate to road speeds of 100km/hr and 110km/hr
- Link type 20 equates to road speeds of 105km/hr

Intersection LoS is based on the delay values as given in Table 7.1. The colour coding in the table and figure corresponds to the colours applied in the LoS plots in section 3.4 of this report.

Table 7.1 Level of Service definitions and criteria

	Definitions Of LoS				
		Taupō	Transporta LoS crite		
LoS	Description	Link (vehicles	Intersection (delay/veh)		
		per hour)	Priority	Signal/Rotary	
LoS F	Forced flow. The amount of traffic approaching a point exceeds that which can pass it. Flow break-downs occur, and queuing and delays occur.	In excess of 900-1700 depending on link type	50 sec	80 sec	
LoS E	Traffic volumes are at or close to capacity and there is virtually no freedom to select desired speed and to manoeuvre within the traffic stream. Flow is unstable and minor disturbances within the traffic stream will cause break-downs in operation.	Between 720-1360 depending on link type	35 sec	55 sec	
LoS D	Approaching unstable flow where all drivers are severely restricted in their freedom to select desired speed and to manoeuvre within the traffic stream. The general level of comfort and convenience is poor and small increases in traffic flow will cause operational problems.	Between 585-1105 depending on link type	25 sec	35 sec	
LoS C	Stable flow but most drivers are restricted to some extent in their freedom to select their desired speed and to manoeuvre within the traffic stream. The general level of comfort and convenience has declined noticeably.	Between 450-850 depending on link type	15 sec	20 sec	
LoS B	Stable flow where drivers still have reasonable freedom to select their desired speed and to manoeuvre within the traffic stream. The general level of comfort and convenience is less than LoS A.	Not Applicable	Not Applicable		

	Definitions Of LoS							
		Taupō Transportation Model LoS criteria						
LoS	Description	Link (vehicles	Intersection (delay/veh)					
		per hour)	Priority	Signal/Rotary				
LoS A	Free flow in which drivers are virtually unaffected by the presence of others in the traffic stream. Freedom to select desired speeds and to manoeuvre within the traffic stream is extremely high and the general level of comfort and convenience is excellent.							

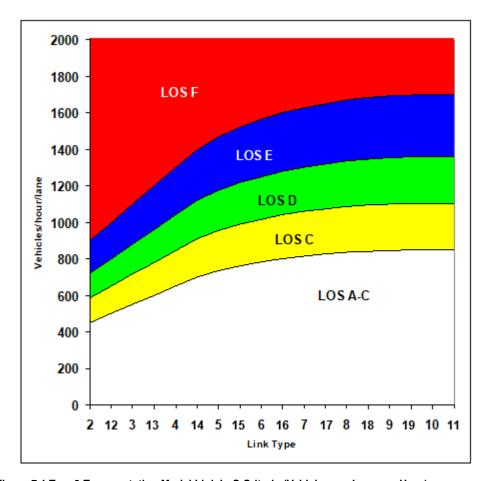


Figure 7.1 Taupō Transportation Model Link LoS Criteria (Vehicles per Lane per Hour)

APPENDIX D

SIDRA MODEL RESULTS: OPTION A1, OPTION B1 AND OPTION B2 (2033 AND 2053)

Note: Where it says 2053, this references 2053+ (Full Development Scenario).

SIDRA Modelling Results Comparison Tables

Norman Smith Street / Wairakei Drive Intersection

	Norman Smith St / Wairakei Dr - 2033								
		Base Scenario	Option A1	Option B1	Option B2				
АМ	LoS	LOS F	LOS F	LOS F	LOS F				
	Avg Delays	2 min delay	2.5 min delay	6.5 min delay	7 min delay				
РМ	LoS	LOS D	LOS B	LOS F	LOS F				
	Avg Delays	49s delay	15s delay	2 min delay	2 min delay				

	Norman Smith St / Wairakei Dr - 2053								
		Base Scenario	Option A1	Option B1	Option B2				
AM	LoS	LOS F	LOS F	LOS F	LOS F				
	Avg Delays	6.5 min delay	8 min delay	16 min delay	15 min delay				
РМ	LoS	LOS F	LOS F	LOS F	LOS F				
	Avg Delays	3.5 min delay	2 min delay	7 min delay	7.5 min delay				

1

Spa Road / Tongariro Street Intersection

	Spa / Tongariro - 2033								
		Base Scenario	Option A1	Option B1	Option B2				
AM	LoS	LOS A	LOS A	LOS A	LOS A				
	Avg Delays	7.6s delay	7.5s delay	7s delay	7s delay				
PM	LoS	LOS F	LOS D	LOS B	LOS A				
	Avg Delays	~2 min delay	48s delay	17s delay	9s delay				

	Spa / Tongariro - 2053								
		Base Scenario	Option A1	Option B1	Option B2				
АМ	LoS	LOS D	LOS F	LOS A	LOS A				
	Avg Delays	43s delay	1 min delay	9s delay	7s delay				
РМ	LoS	LOS F	LOS F	LOS F	LOS A				
	Avg Delays	4 min delay	4 min delay	2 min delay	9s delay				

Spa Road / Ōpepe Street / Tītīraupenga Street Intersection

	Spa / Ōpepe / Tītīraupenga - 2033								
		Base Scenario	Option A1	Option B1	Option B2				
АМ	LoS	LOS F	LOS F	LOS F	LOS F				
	Avg Delays	3.5 min delay	3 min delay	6 min delay	3 min delay				
PM	LoS	LOS F	LOS F	LOS F	LOS F				
	Avg Delays	1.5 min delay	2 min delay	2.5 min delay	3 min delay				

	Spa / Ōpepe / Tītīraupenga - 2053								
		Base Scenario	Option A1	Option B1	Option B2				
AM	LoS	LOS F	LOS F	LOS F	LOS F				
	Avg Delays	5 min delay	4.5 min delay	9 min delay	7 min delay				
РМ	LoS	LOS F	LOS F	LOS F	LOS F				
	Avg Delays	4.5 min delay	4.5 min delay	10 min delay	4.5 min delay				

Pāora Hapi Street / Tītīraupenga Street Intersection

	Pāora Hapi / Tītīraupenga - 2033								
		Base Scenario	Option A1	Option B1	Option B2				
AM	LoS	LOS B (East)	LOS B (East)	LOS C (East)	LOS B (East)				
		LOS C (West)	LOS C (West)	LOS C (West)	LOS C (West)				
	Avg Delays	6.5s delay	6s delay	4s delay	7s delay				
РМ	LoS	LOS B (East)	LOS A (East)	LOS B (East)	LOS B (East)				
		LOS B (West)	LOS B (West)	LOS C (West)	LOS B (West)				
	Avg Delays	6s delay	6s delay	4s delay	6s delay				

Note: Delay times present for the overall intersection. LOS is only applicable for the East / West approach.

	Pāora Hapi / Tītīraupenga - 2053												
		Base Scenario	Option Al	Option B1	Option B2								
AM	LoS	LOS C (East)	LOS B (East)	LOS D (East)	LOS B (East)								
		LOS F (West)	LOS F (West)	LOS F (West)	LOS F (West)								
	Avg Delays	23s delay	20s delay	1 min delay	54s delay								
РМ	LoS	LOS B (East)	LOS A (East)	LOS D (East)	LOS B (East)								
		LOS C (West)	LOS B (West)	LOS F (West)	LOS D (West)								
	Avg Delays	8s delay	8s delay	1 min delay	10s delay								

Note: Delay times present for the overall intersection. LOS is only applicable for the East / West approach.

Taupō Control Gates Bridge

	Taupō Control Gates - 2033												
		Base Scenario	Option Al	Option B1	Option B2								
AM	LoS	LOS E (North)	LOS A (North)	LOS A (North)	LOS A (North)								
		LOS A (South)	LOS A (South)	LOS A (South)	LOS A (South)								
	Avg Delays	35s delay	4s delay	4s delay	4s delay								
РМ	LoS	LOS A (North)	LOS A (North)	LOS A (North)	LOS A (North)								
		LOS A (South)	LOS A (South)	LOS A (South)	LOS A (South)								
	Avg Delays	7s delay	4s delay	4s delay	4s delay								

Note: Delay times present for the overall intersection. LOS is only applicable for the East / West approach.

	Taupō Control Gates - 2053												
		Base Scenario	Option Al	Option B1	Option B2								
AM	LoS	LOS F (North)	LOS A (North)	LOS A (North)	LOS A (North)								
		LOS A (South)	LOS A (South)	LOS A (South)	LOS A (South)								
	Avg Delays	3 min delay	5s delay	8s delay	7s delay								
РМ	LoS	LOS A (North)	LOS A (North)	LOS A (North)	LOS A (North)								
		LOS F (South)	LOS A (South)	LOS B (South)	LOS A (South)								
	Avg Delays	2.5 min delay	5s delay	9s delay	7s delay								

Note: Delay times present for the overall intersection. LOS is only applicable for the East / West approach.

Second River Crossing (Option B2 only)

	Second River Cross	ing - 2033
		Option B2
АМ	LoS	LOS A (North) LOS A (South)
	Avg Delays	4s delay
РМ	LoS	LOS A (North) LOS A (South)
	Avg Delays	4s delay

Note: Second River Crossing has only been modelled for Option B2.

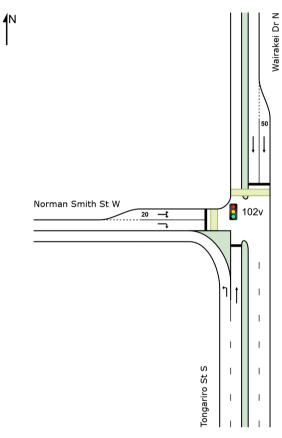
Note: Delay times present for the overall intersection. LOS is only applicable for the East / West approach.

	Second River Crossing - 2053									
		Option B2								
AM	LoS	LOS A (North)								
		LOS A (South)								
	Avg Delays	5s delay								
PM	LoS	LOS A (North)								
		LOS A (South)								
	Avg Delays	4.5s delay								

Note: Second River Crossing has only been modelled for Option B2.

Note: Delay times present for the overall intersection. LOS is only applicable for the East / West approach.

SITE LAYOUT


Site: 102v [Norman / Wairakei 2033 AM Base Option A1 (Site Folder: 2033 Option A1)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

MOVEMENT SUMMARY

Site: 102v [Norman / Wairakei 2033 AM Base Option A1 (Site Folder: 2033 Option A1)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Vehicle	Moveme	ent Perform	ance											
Mov ID	Turn	INPUT V([Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: T	ongariro S	St S												
1	L2	436	22	459	5.0	0.256	4.5	LOS A	0.0	0.0	0.00	0.46	0.00	48.1
2 Approac	T1 ch	363 799	21 43	382 841	5.8 5.4	0.642 0.642	37.9 19.7	LOS D LOS B	19.2 19.2	141.0 141.0	0.92 0.42	0.80	0.92	46.7 47.0
North: W	Vairakei Dı	r N												
8	T1	881	28	927	3.2	* 1.140	197.4	LOS F	58.7	421.8	1.00	1.89	2.28	36.4
Approac	ch	881	28	927	3.2	1.140	197.4	LOS F	58.7	421.8	1.00	1.89	2.28	36.4
West: N	orman Sm	nith St W												
10	L2	12	0	13	0.0	1.135	196.7	LOS F	82.8	589.1	1.00	1.45	2.23	36.8
12	R2	1222	23	1286	1.9	* 1.135	195.9	LOS F	88.7	630.7	1.00	1.44	2.23	15.5
Approac	ch	1234	23	1299	1.9	1.135	195.9	LOS F	88.7	630.7	1.00	1.44	2.23	16.1
All Vehic	cles	2914	94	3067	3.2	1.140	148.0	LOS F	88.7	630.7	0.84	1.35	1.75	32.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	Pedestrian Movement Performance													
Mov		Input Vol.	Dem.	Aver.	Level of	AVERAGE BAC	CK OF QUEUE	Prop.	Effective Travel Time	Travel Dist.	Aver.			
ID	Crossing		Flow	Delay	Service	[Ped	Dist]	Que	Stop Rate		Speed			

		ped/h	ped/h	sec		ped	m			sec	m	m/sec
North: Wairakei Dr N												
P3	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	80.3	33.9	0.42
West	: Norman Smi	ith St W										
P4	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	78.8	31.9	0.40
All Pe	edestrians	0	105	54.3	LOS E	0.2	0.2	0.95	0.95	79.6	32.9	0.41

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 8:06:19 pm

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

Site: 102v [Norman / Wairakei 2033 AM Base Option A1 (Site Folder: 2033 Option A1)]

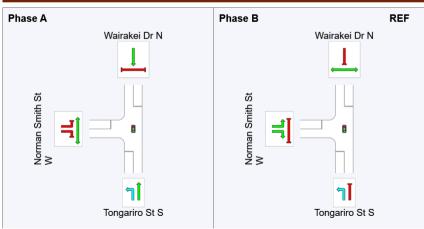
New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Opposed Turns Reference Phase: Phase B Input Phase Sequence: A, B Output Phase Sequence: A, B

Phase Timing Summary

Phase	Α	В
Phase Change Time (sec)	76	0
Green Time (sec)	38	70
Phase Time (sec)	44	76
Phase Split	37%	63%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

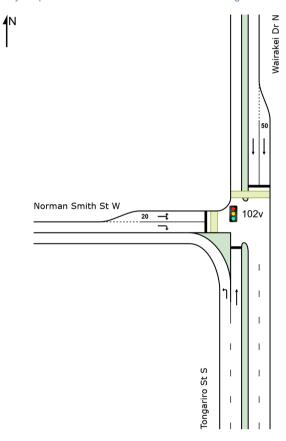
Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 8:06:19 pm
Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

SITE LAYOUT


Site: 102v [Norman / Wairakei 2033 PM Base Option A1 (Site Folder: 2033 Option A1)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

MOVEMENT SUMMARY

Site: 102v [Norman / Wairakei 2033 PM Base Option A1 (Site Folder: 2033 Option A1)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 60 seconds (Site Practical Cycle Time)

Vehicle	Moveme	ent Perform	ance											
Mov ID	Turn	INPUT VO	HV]	DEMAND [Total	HV]	Deg. Satn	Aver. Delay	Level of Service	[Veh.	OF QUEUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
South: To	ongariro S	veh/h st S	veh/h	veh/h	%	v/c	sec		veh	<u> </u>				km/h
1	L2	1129	19	1188	1.7	0.648	4.8	LOS A	0.0	0.0	0.00	0.46	0.00	47.7
2	T1	680	11	716	1.6	* 0.856	24.2	LOS C	23.3	165.5	0.97	1.05	1.20	47.9
Approac	h	1809	30	1904	1.7	0.856	12.1	LOS B	23.3	165.5	0.36	0.68	0.45	47.8
North: W	/airakei Dr	· N												
8	T1	415	12	437	2.9	0.263	11.8	LOS B	4.1	29.6	0.68	0.56	0.68	48.9
Approac	h	415	12	437	2.9	0.263	11.8	LOS B	4.1	29.6	0.68	0.56	0.68	48.9
West: No	orman Sm	ith St W												
10	L2	9	0	9	0.0	* 0.767	25.8	LOS C	8.9	63.8	0.85	0.89	1.05	47.7
12	R2	639	19	673	3.0	0.767	25.4	LOS C	9.5	67.9	0.84	0.88	1.03	38.7
Approac	h	648	19	682	2.9	0.767	25.4	LOS C	9.5	67.9	0.84	0.88	1.03	39.3
All Vehic	les	2872	61	3023	2.1	0.856	15.1	LOS B	23.3	165.5	0.52	0.71	0.61	47.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	Pedestrian Movement Performance													
Mov		Input Vol.	Dem.	Aver.	Level of	AVERAGE BAC	CK OF QUEUE	Prop.	Effective Travel Time	Travel Dist.	Aver.			
ID	Crossing		Flow	Delay	Service	[Ped	Dist]	Que	Stop Rate		Speed			

		ped/h	ped/h	sec		ped	m			sec	m	m/sec
North	North: Wairakei Dr N											
P3	Full	50	53	24.4	LOS C	0.1	0.1	0.90	0.90	50.4	33.9	0.67
West	: Norman Smi	th St W										
P4	Full	50	53	24.4	LOS C	0.1	0.1	0.90	0.90	48.9	31.9	0.65
All Pe	edestrians	0	105	24.4	LOS C	0.1	0.1	0.90	0.90	49.7	32.9	0.66

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 8:06:20 pm

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

Site: 102v [Norman / Wairakei 2033 PM Base Option A1 (Site Folder: 2033 Option A1)]

New Site

Site Category: (None)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Opposed Turns Reference Phase: Phase B Input Phase Sequence: A, B Output Phase Sequence: A, B

Phase Timing Summary

Phase	Α	В
Phase Change Time (sec)	28	0
Green Time (sec)	26	22
Phase Time (sec)	32	28
Phase Split	53%	47%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

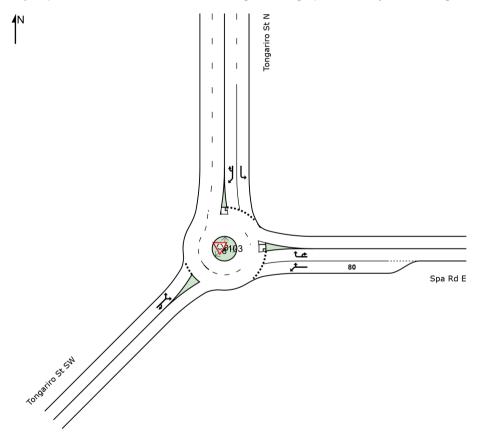
Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 8:06:20 pm
Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

SITE LAYOUT


▼ Site: 103 [Spa / Tongariro 2033 AM Base Option A1 (Site Folder: 2033 Option A1)]

New Site

Site Category: (None)

Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

▼ Site: 103 [Spa / Tongariro 2033 AM Base Option A1 (Site Folder: 2033 Option A1)]

New Site

Site Category: (None)

Roundabout

Vehicle	Movem	ent Perform	ance											
Mov ID	Turn	INPUT V([Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Sp	a Rd E													
4a	L1	33	0	35	0.0	0.411	8.5	LOS A	3.2	23.0	0.88	0.89	0.89	42.6
6	R2	515	27	542	5.2	0.411	13.1	LOS B	3.2	23.0	0.87	0.92	0.90	43.0
6u	U	1	1	1	100.0	0.411	21.4	LOS C	3.0	21.9	0.87	0.95	0.92	41.5
Approac	h	549	28	578	5.1	0.411	12.8	LOS B	3.2	23.0	0.87	0.92	0.90	43.0
North: To	ongariro S	t N												
7	L2	1331	30	1401	2.3	0.894	5.7	LOS A	24.7	176.5	0.84	0.48	0.84	44.8
9a	R1	679	20	715	2.9	0.620	6.9	LOS A	7.0	50.5	0.46	0.56	0.46	44.6
9u	U	69	0	73	0.0	0.620	9.1	LOS A	7.0	50.5	0.46	0.56	0.46	46.0
Approac	ch	2079	50	2188	2.4	0.894	6.2	LOS A	24.7	176.5	0.71	0.51	0.71	44.8
SouthW	est: Tonga	riro St SW												
30a	L1	368	15	387	4.1	0.650	6.2	LOS A	4.8	34.4	0.80	0.97	1.02	28.8
32a	R1	64	0	67	0.0	0.650	8.7	LOS A	4.8	34.4	0.80	0.97	1.02	28.9
32u	U	1	0	1	0.0	0.650	10.1	LOS B	4.8	34.4	0.80	0.97	1.02	29.4
Approac	ch	433	15	456	3.5	0.650	6.6	LOS A	4.8	34.4	0.80	0.97	1.02	28.9
All Vehic	cles	3061	93	3222	3.0	0.894	7.5	LOSA	24.7	176.5	0.75	0.65	0.79	41.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

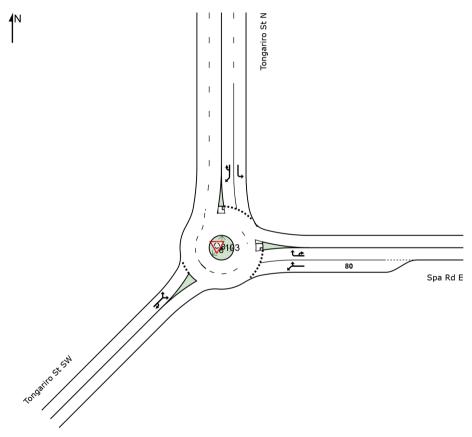
Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

▼ Site: 103 [Spa / Tongariro 2033 PM Base Option A1 (Site Folder: 2033 Option A1)]

New Site

Site Category: (None)

Roundabout

▼ Site: 103 [Spa / Tongariro 2033 PM Base Option A1 (Site Folder: 2033 Option A1)]

New Site

Site Category: (None)

Roundabout

Vehicle	Moveme	ent Perform	ance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Sp	oa Rd E													
4a	L1	31	0	33	0.0	0.667	8.8	LOS A	7.4	52.8	0.82	0.91	1.02	42.4
6	R2	1254	22	1320	1.8	0.667	13.0	LOS B	7.4	52.8	0.83	0.93	1.04	43.0
6u	U	1	1	1	100.0	0.667	20.4	LOS C	7.2	51.3	0.84	0.96	1.07	41.6
Approac	ch	1286	23	1354	1.8	0.667	12.9	LOS B	7.4	52.8	0.83	0.93	1.04	43.0
North: T	ongariro S	t N												
7	L2	646	22	680	3.4	0.413	4.6	LOS A	3.9	27.8	0.19	0.50	0.19	46.1
9a	R1	364	9	383	2.5	0.340	6.2	LOS A	2.8	20.0	0.18	0.57	0.18	45.1
9u	U	91	0	96	0.0	0.340	8.5	LOS A	2.8	20.0	0.18	0.57	0.18	46.4
Approac	ch	1101	31	1159	2.8	0.413	5.4	LOS A	3.9	27.8	0.18	0.53	0.18	45.8
SouthW	est: Tonga	riro St SW												
30a	L1	466	8	491	1.7	1.239	231.9	LOS F	72.2	512.6	1.00	6.80	11.73	10.0
32a	R1	26	0	27	0.0	1.239	234.5	LOS F	72.2	512.6	1.00	6.80	11.73	9.8
32u	U	1	0	1	0.0	1.239	235.9	LOS F	72.2	512.6	1.00	6.80	11.73	9.0
Approac	ch	493	8	519	1.6	1.239	232.1	LOS F	72.2	512.6	1.00	6.80	11.73	10.0
All Vehic	cles	2880	62	3032	2.2	1.239	47.6	LOS D	72.2	512.6	0.61	1.78	2.54	28.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

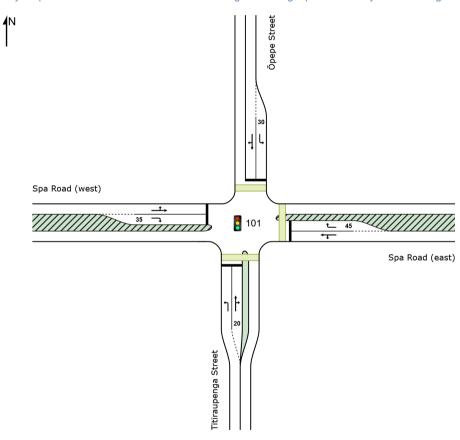
Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2033 AM Base Option A1 (Site Folder: 2033 Option

Ā1)]

New Site

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2033 AM Base Option A1 (Site Folder: 2033 Option

Ā1)]

New Site

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Vehicle	Moveme	ent Perform	ance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: T	ītīraupeng	ja Street												
1	L2	189	1	199	0.5	0.596	44.5	LOS D	9.7	68.3	0.88	0.79	0.88	32.3
2	T1	119	1	125	8.0	* 1.383	400.4	LOS F	23.8	167.4	1.00	1.83	3.40	12.6
3	R2	7	0	7	0.0	1.383	404.9	LOS F	23.8	167.4	1.00	1.83	3.40	27.6
Approac	h	315	2	332	0.6	1.383	187.0	LOS F	23.8	167.4	0.93	1.21	1.89	18.5
East: Sp	a Road (e	ast)												
4	L2	103	1	108	1.0	1.334	364.3	LOS F	111.2	807.0	1.00	2.44	3.09	29.1
5	T1	510	25	537	4.9	* 1.334	358.1	LOS F	111.2	807.0	1.00	2.44	3.09	28.9
6	R2	131	1	138	8.0	0.498	56.2	LOS E	7.6	53.5	0.97	0.80	0.97	45.4
Approac	h	744	27	783	3.6	1.334	305.8	LOS F	111.2	807.0	0.99	2.15	2.72	31.1
North: Ō	pepe Stre	et												
7	L2	46	1	48	2.2	* 0.199	35.0	LOS C	1.8	13.2	0.93	0.73	0.93	47.0
8	T1	61	1	64	1.6	0.165	42.0	LOS D	3.2	22.6	0.86	0.67	0.86	38.5
9	R2	2	0	2	0.0	0.165	46.6	LOS D	3.2	22.6	0.86	0.67	0.86	37.7
Approac	h	109	2	115	1.8	0.199	39.1	LOS D	3.2	22.6	0.89	0.69	0.89	44.5
West: Sp	oa Road (\	west)												
10	L2	3	0	3	0.0	1.085	155.4	LOS F	75.4	547.9	1.00	1.64	1.94	23.2
11	T1	639	28	673	4.4	1.085	149.0	LOS F	75.4	547.9	1.00	1.64	1.94	38.4
12	R2	133	2	140	1.5	0.508	56.3	LOS E	7.7	54.8	0.97	0.80	0.97	29.5
Approac	h	775	30	816	3.9	1.085	133.1	LOS F	75.4	547.9	0.99	1.50	1.77	38.0
All Vehic	les	1943	61	2045	3.1	1.383	202.7	LOS F	111.2	807.0	0.98	1.66	2.10	33.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	Pedestrian Movement Performance														
Mov ID	Crossing	Input Vol. ped/h	Dem. Flow ped/h	Aver. Delay sec	Level of Service	AVERAGE BACK [Ped ped	OF QUEUE Dist] m	Prop. Que	Effective Tr Stop Rate	avel Time sec	Travel Dist. m	Aver. Speed m/sec			
South	ı: Tītīraupenga	Street													
P1	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	230.3	228.8	0.99			
East:	Spa Road (ea	st)													
P2	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	221.0	216.8	0.98			
North	: Ōpepe Stree	t													
P3	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	218.8	213.9	0.98			
All Pe	edestrians	150	158	54.3	LOS E	0.2	0.2	0.95	0.95	223.4	219.8	0.98			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 9:43:21 pm

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2033 AM Base Option A1 (Site Folder: 2033 Option

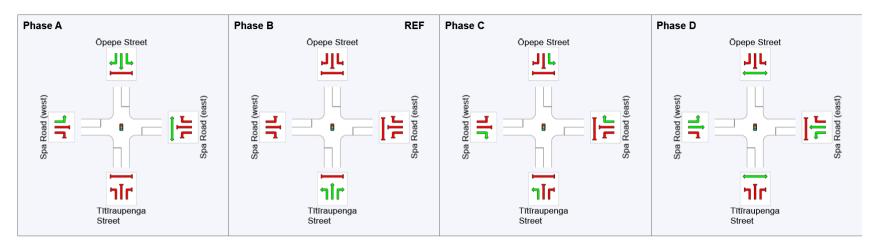
Ā1)]

New Site

Site Category: (None)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program Phase Sequence: Leading Right Turn Reference Phase: Phase B


Input Phase Sequence: A, B, C, D
Output Phase Sequence: A, B, C, D

Phase Timing Summary

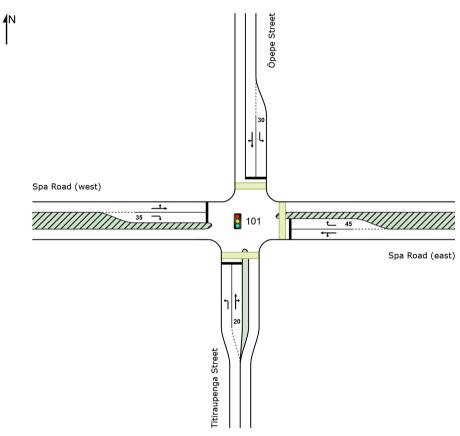
Phase	Α	В	С	D
Phase Change Time (sec)	89	0	13	37
Green Time (sec)	25	7	18	46
Phase Time (sec)	31	13	24	52
Phase Split	26%	11%	20%	43%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 9:43:21 pm
Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2033 PM Base Option A1 (Site Folder: 2033 Option

Ā1)]

New Site

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2033 PM Base Option A1 (Site Folder: 2033 Option

Ā1)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Vehicle	e Movem	ent Perform	nance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	Tītīraupeng	ga Street												
1	L2	107	1	113	0.9	0.269	43.3	LOS D	5.3	37.2	0.84	0.76	0.84	32.6
2	T1	38	1	40	2.6	* 0.519	64.3	LOS E	3.0	21.6	1.00	0.74	1.01	34.2
3	R2	9	0	9	0.0	0.519	68.9	LOS E	3.0	21.6	1.00	0.74	1.01	44.3
Approa	ch	154	2	162	1.3	0.519	50.0	LOS D	5.3	37.2	0.89	0.75	0.89	35.4
East: S	pa Road (e	east)												
4	L2	57	0	60	0.0	1.127	188.0	LOS F	84.6	608.0	1.00	1.78	2.15	36.7
5	T1	604	21	636	3.5	* 1.127	181.8	LOS F	84.6	608.0	1.00	1.78	2.15	36.5
6	R2	24	1	25	4.2	0.093	52.4	LOS D	1.3	9.3	0.89	0.71	0.89	45.7
Approa	ch	685	22	721	3.2	1.127	177.8	LOS F	84.6	608.0	1.00	1.74	2.10	36.8
North: Ċ	Dpepe Stre	et												
7	L2	53	1	56	1.9	* 0.228	35.5	LOS D	2.2	15.4	0.93	0.74	0.93	47.0
8	T1	86	0	91	0.0	0.226	42.6	LOS D	4.5	31.3	0.87	0.69	0.87	38.4
9	R2	1	0	1	0.0	0.226	47.2	LOS D	4.5	31.3	0.87	0.69	0.87	37.6
Approa	ch	140	1	147	0.7	0.228	40.0	LOS D	4.5	31.3	0.89	0.71	0.89	44.1
West: S	pa Road (west)												
10	L2	13	0	14	0.0	0.852	47.3	LOS D	33.3	241.0	0.95	0.93	1.05	38.2
11	T1	542	21	571	3.9	0.852	40.9	LOS D	33.3	241.0	0.95	0.93	1.05	46.2
12	R2	48	0	51	0.0	0.181	53.2	LOS D	2.6	18.4	0.91	0.74	0.91	30.1
Approa	ch	603	21	635	3.5	0.852	42.0	LOS D	33.3	241.0	0.95	0.92	1.04	45.8
All Vehi	cles	1582	46	1665	2.9	1.127	101.4	LOS F	84.6	608.0	0.96	1.24	1.47	40.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	Pedestrian Movement Performance														
Mov ID	Crossing	Input Vol. ped/h	Dem. Flow ped/h	Aver. Delay sec	Level of Service	AVERAGE BAC [Ped ped	K OF QUEUE Dist] m	Prop. Que	Effective T Stop Rate	ravel Time sec	Travel Dist. m	Aver. Speed m/sec			
South	: Tītīraupenga S	Street													
P1	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	230.3	228.8	0.99			
East:	Spa Road (east	t)													
P2	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	221.0	216.8	0.98			
North	: Ōpepe Street														
P3	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	218.8	213.9	0.98			
All Pe	destrians	150	158	54.3	LOS E	0.2	0.2	0.95	0.95	223.4	219.8	0.98			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 8:02:06 pm

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2033 PM Base Option A1 (Site Folder: 2033 Option

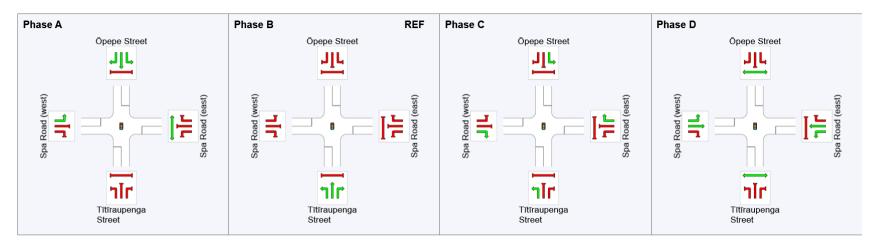
Ā1)]

New Site

Site Category: (None)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program Phase Sequence: Leading Right Turn Reference Phase: Phase B


Input Phase Sequence: A, B, C, D
Output Phase Sequence: A, B, C, D

Phase Timing Summary

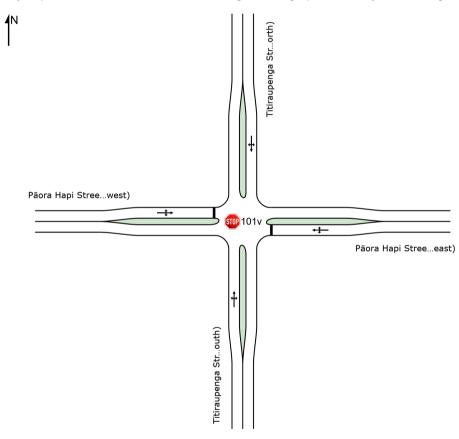
Phase	Α	В	С	D
Phase Change Time (sec)	89	0	12	36
Green Time (sec)	25	6	18	47
Phase Time (sec)	31	12	24	53
Phase Split	26%	10%	20%	44%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 8:02:06 pm
Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

OITE LATOU

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2033 AM Base Option A1 (Site Folder: 2033 Option

A1)]

New Site Site Category: (None) Stop (Two-Way)

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2033 AM Base Option A1 (Site Folder: 2033 Option A1)]

New Site

Site Category: (None) Stop (Two-Way)

Vehicle	e Movem	ent Perform	nance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	Tītīraupenç	ga Street (sou	uth)											
1	L2	76	1	80	1.3	0.257	4.7	LOS A	0.1	0.9	0.03	0.10	0.03	40.4
2	T1	382	2	402	0.5	0.257	0.0	LOS A	0.1	0.9	0.03	0.10	0.03	49.0
3	R2	9	0	9	0.0	0.257	5.7	LOS A	0.1	0.9	0.03	0.10	0.03	47.3
Approa	ch	467	3	492	0.6	0.257	0.9	NA	0.1	0.9	0.03	0.10	0.03	47.4
East: Pa	āora Hapi :	Street (east)												
4	L2	15	0	16	0.0	0.069	8.5	LOS A	0.2	1.7	0.49	0.96	0.49	39.6
5	T1	19	0	20	0.0	0.069	13.4	LOS B	0.2	1.7	0.49	0.96	0.49	30.9
6	R2	4	0	4	0.0	0.069	13.7	LOS B	0.2	1.7	0.49	0.96	0.49	37.2
Approa	ch	38	0	40	0.0	0.069	11.5	LOS B	0.2	1.7	0.49	0.96	0.49	35.0
North: T	Tītīraupeng	ga Street (nor	th)											
7	L2	3	0	3	0.0	0.156	6.6	LOS A	0.3	1.8	0.11	0.05	0.11	47.7
8	T1	246	3	259	1.2	0.156	0.3	LOS A	0.3	1.8	0.11	0.05	0.11	49.0
9	R2	21	0	22	0.0	0.156	6.8	LOS A	0.3	1.8	0.11	0.05	0.11	38.0
Approa	ch	270	3	284	1.1	0.156	0.9	NA	0.3	1.8	0.11	0.05	0.11	48.1
West: P	aora Hapi	Street (west)												
10	L2	20	0	21	0.0	0.697	14.0	LOS B	4.6	32.0	0.83	1.44	1.70	26.2
11	T1	19	0	20	0.0	0.697	19.2	LOS C	4.6	32.0	0.83	1.44	1.70	25.4
12	R2	225	1	237	0.4	0.697	21.6	LOS C	4.6	32.0	0.83	1.44	1.70	28.5
Approa	ch	264	1	278	0.4	0.697	20.9	LOS C	4.6	32.0	0.83	1.44	1.70	28.1
All Vehi	cles	1039	7	1094	0.7	0.697	6.4	NA	4.6	32.0	0.27	0.46	0.49	40.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

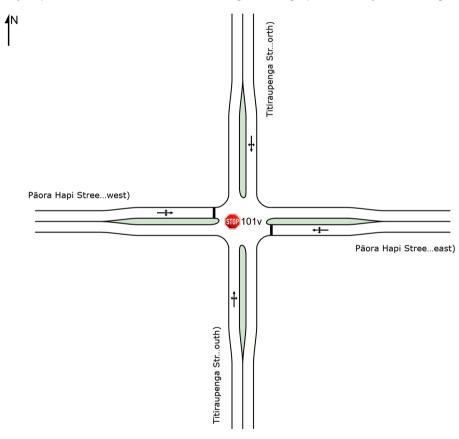
Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 7:54:25 am


Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

OITE LATOU

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2033 PM Base Option A1 (Site Folder: 2033 Option

A1)]

New Site Site Category: (None) Stop (Two-Way)

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2033 PM Base Option A1 (Site Folder: 2033 Option A1)]

New Site

Site Category: (None) Stop (Two-Way)

Vehicle	e Movem	ent Perform	nance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	Γītīraupenç	ga Street (sou	uth)											
1	L2	81	1	85	1.2	0.139	4.7	LOS A	0.1	0.7	0.04	0.19	0.04	39.8
2	T1	159	1	167	0.6	0.139	0.1	LOS A	0.1	0.7	0.04	0.19	0.04	48.0
3	R2	8	0	8	0.0	0.139	5.5	LOS A	0.1	0.7	0.04	0.19	0.04	46.4
Approa	ch	248	2	261	0.8	0.139	1.7	NA	0.1	0.7	0.04	0.19	0.04	45.0
East: Pa	āora Hapi :	Street (east)												
4	L2	9	0	9	0.0	0.055	8.4	LOS A	0.2	1.3	0.45	0.94	0.45	40.7
5	T1	22	0	23	0.0	0.055	10.5	LOS B	0.2	1.3	0.45	0.94	0.45	31.7
6	R2	6	0	6	0.0	0.055	10.6	LOS B	0.2	1.3	0.45	0.94	0.45	38.3
Approa	ch	37	0	39	0.0	0.055	10.0	LOS A	0.2	1.3	0.45	0.94	0.45	34.9
North: 7	ītīraupeng	a Street (nor	th)											
7	L2	6	0	6	0.0	0.149	5.4	LOS A	0.2	1.6	0.09	0.07	0.09	47.7
8	T1	233	1	245	0.4	0.149	0.1	LOS A	0.2	1.6	0.09	0.07	0.09	49.0
9	R2	25	0	26	0.0	0.149	5.5	LOS A	0.2	1.6	0.09	0.07	0.09	38.0
Approa	ch	264	1	278	0.4	0.149	8.0	NA	0.2	1.6	0.09	0.07	0.09	47.9
West: P	āora Hapi	Street (west)												
10	L2	23	0	24	0.0	0.561	8.7	LOS A	3.6	25.6	0.64	1.22	1.04	29.6
11	T1	19	0	20	0.0	0.561	12.2	LOS B	3.6	25.6	0.64	1.22	1.04	28.7
12	R2	266	1	280	0.4	0.561	13.4	LOS B	3.6	25.6	0.64	1.22	1.04	31.7
Approa	ch	308	1	324	0.3	0.561	13.0	LOS B	3.6	25.6	0.64	1.22	1.04	31.4
All Vehi	cles	857	4	902	0.5	0.561	5.8	NA	3.6	25.6	0.29	0.55	0.43	39.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 7:54:26 am

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

▽ Site: 101 [TCG Bridge 2033 AM (Site Folder: 2033 Option A1)]

New Site

Site Category: (None) Give-Way (Two-Way)

1N					Tongariro Street
	1		ļ	l	
	7	/	1 10 I	1	
	†	1		 	
Tongariro Street	1			l I	
Tonga				ı	

▽ Site: 101 [TCG Bridge 2033 AM (Site Folder: 2033 Option A1)]

New Site

Site Category: (None) Give-Way (Two-Way)

Vehicle	Movemo	ent Perform	ance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: T	Tongariro S	Street												
2	T1	799	5.0	841	5.0	0.223	4.2	LOS A	0.0	0.0	0.00	0.53	0.00	54.6
Approac	ch	799	5.0	841	5.0	0.223	4.2	NA	0.0	0.0	0.00	0.53	0.00	54.6
North: T	ongariro S	Street												
8	T1	2103	5.0	2214	5.0	0.586	4.4	LOS A	0.0	0.0	0.00	0.53	0.00	54.3
Approac	ch	2103	5.0	2214	5.0	0.586	4.4	NA	0.0	0.0	0.00	0.53	0.00	54.3
All Vehic	cles	2902	5.0	3055	5.0	0.586	4.4	NA	0.0	0.0	0.00	0.53	0.00	54.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

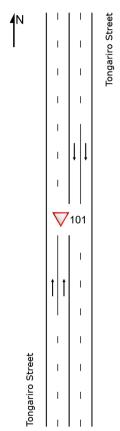
Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Tuesday, 16 April 2024 7:49:47 am

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

V Site: 101 [TCG Bridge 2033 PM (Site Folder: 2033 Option A1)]

New Site

Site Category: (None) Give-Way (Two-Way)

V Site: 101 [TCG Bridge 2033 PM (Site Folder: 2033 Option A1)]

New Site

Site Category: (None) Give-Way (Two-Way)

Vehicle	Movemo	ent Perform	ance											
Mov ID	Turn	INPUT Vo [Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: T	ongariro S	Street												
2	T1	1809	5.0	1904	5.0	0.504	4.4	LOS A	0.0	0.0	0.00	0.53	0.00	54.4
Approac	ch	1809	5.0	1904	5.0	0.504	4.4	NA	0.0	0.0	0.00	0.53	0.00	54.4
North: T	ongariro S	treet												
8	T1	1054	5.0	1109	5.0	0.294	4.3	LOS A	0.0	0.0	0.00	0.53	0.00	54.6
Approac	ch	1054	5.0	1109	5.0	0.294	4.3	NA	0.0	0.0	0.00	0.53	0.00	54.6
All Vehic	cles	2863	5.0	3014	5.0	0.504	4.3	NA	0.0	0.0	0.00	0.53	0.00	54.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

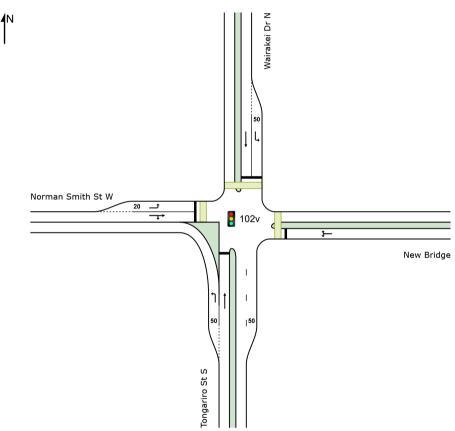
Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Tuesday, 16 April 2024 7:50:08 am


Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

Site: 102v [Norman / Wairakei 2033 AM Base Option B1 (Site Folder: 2033 Option B1)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Site: 102v [Norman / Wairakei 2033 AM Base Option B1 (Site Folder: 2033 Option B1)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Optimum Cycle Time - Minimum Delay)

Vehicle	Movem	ent Perform	ance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: T	Tongariro S	St S												
1	L2	416	22	438	5.3	0.245	4.5	LOS A	0.0	0.0	0.00	0.46	0.00	48.1
2	T1	243	12	256	4.9	0.820	48.0	LOS D	14.3	104.1	0.90	0.89	1.09	45.9
Approac	ch	659	34	694	5.2	0.820	20.6	LOS C	14.3	104.1	0.33	0.62	0.40	46.4
East: Ne	ew Bridge													
4	L2	1	0	1	0.0	* 0.510	56.5	LOS E	7.3	54.5	0.97	0.80	0.97	28.3
6	R2	125	9	132	7.2	0.510	56.5	LOS E	7.3	54.5	0.97	0.80	0.97	45.2
Approac	ch	126	9	133	7.1	0.510	56.5	LOS E	7.3	54.5	0.97	0.80	0.97	45.2
North: W	Vairakei D	r N												
7	L2	416	12	438	2.9	* 1.587	584.5	LOS F	95.3	683.9	1.00	2.26	3.96	23.6
8	T1	475	16	500	3.4	1.370	391.0	LOS F	90.0	647.9	1.00	2.61	3.25	28.7
Approac	ch	891	28	938	3.1	1.587	481.3	LOS F	95.3	683.9	1.00	2.45	3.58	26.1
West: N	orman Sm	nith St W												
10	L2	8	0	8	0.0	0.014	32.7	LOS C	0.3	2.3	0.69	0.64	0.69	47.2
11	T1	702	13	739	1.9	* 1.572	564.2	LOS F	279.3	1986.8	1.00	2.80	3.86	6.7
12	R2	511	10	538	2.0	1.572	568.9	LOS F	279.3	1986.8	1.00	2.80	3.86	6.7
Approac	ch	1221	23	1285	1.9	1.572	562.7	LOS F	279.3	1986.8	1.00	2.79	3.83	6.9
All Vehic	cles	2897	94	3049	3.2	1.587	392.3	LOS F	279.3	1986.8	0.85	2.10	2.85	20.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	strian Mover	nent Perform	ance									
Mov ID	Crossing	Input Vol. ped/h	Dem. Flow ped/h	Aver. Delay sec	Level of Service	AVERAGE BAC [Ped ped	K OF QUEUE Dist] m	Prop. Que	Effective Tr Stop Rate	ravel Time sec	Travel Dist. m	Aver. Speed m/sec
East:	New Bridge	p 0 si, i i	p 0 a)			702						11555
P2	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	216.3	210.6	0.97
North	: Wairakei Dr N	l										
P3	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	80.3	33.9	0.42
West:	Norman Smith	n St W										
P4	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	78.8	31.9	0.40
All Pe	destrians	50	158	54.3	LOS E	0.2	0.2	0.95	0.95	125.1	92.1	0.74

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Tuesday, 23 April 2024 8:45:06 am
Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

Site: 102v [Norman / Wairakei 2033 AM Base Option B1 (Site Folder: 2033 Option B1)]

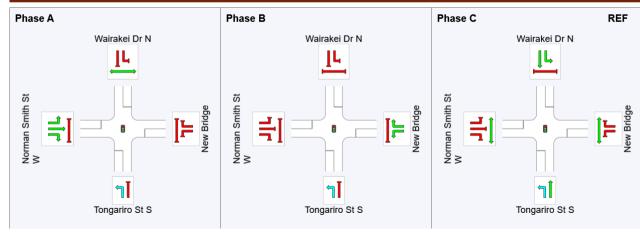
New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Optimum Cycle Time - Minimum Delay)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Opposed Turns Reference Phase: Phase C Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Summary

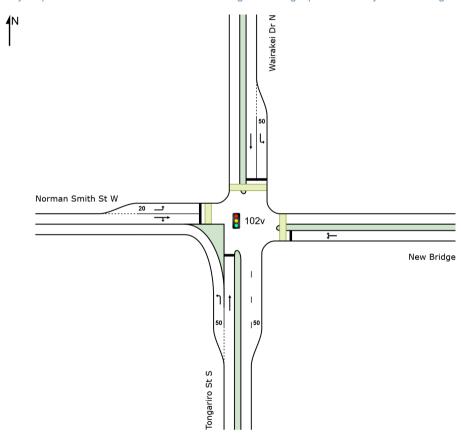
Phase	Α	В	С
Phase Change Time (sec)	38	96	0
Green Time (sec)	52	18	32
Phase Time (sec)	58	24	38
Phase Split	48%	20%	32%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Tuesday, 23 April 2024 8:45:06 am
Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

Site: 102v [Norman / Wairakei 2033 PM Base Option B1 (Site Folder: 2033 Option B1)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Site: 102v [Norman / Wairakei 2033 PM Base Option B1 (Site Folder: 2033 Option B1)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Vehicle	Movem	ent Perform	ance											
Mov ID	Turn	INPUT Vo [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: 7	Tongariro S	St S												
1	L2	1100	18	1158	1.6	0.631	4.8	LOS A	0.0	0.0	0.00	0.46	0.00	47.8
2	T1	317	4	334	1.3	* 1.133	196.4	LOS F	42.0	297.3	1.00	1.77	2.31	36.5
Approac	ch	1417	22	1492	1.6	1.133	47.6	LOS D	42.0	297.3	0.22	0.75	0.52	39.9
East: Ne	ew Bridge													
4	L2	1	0	1	0.0	1.063	141.6	LOS F	42.7	304.1	1.00	1.27	1.90	16.9
6	R2	398	8	419	2.0	* 1.063	141.6	LOS F	42.7	304.1	1.00	1.27	1.90	39.4
Approac	ch	399	8	420	2.0	1.063	141.6	LOS F	42.7	304.1	1.00	1.27	1.90	39.4
North: V	Vairakei D	r N												
7	L2	211	8	222	3.8	0.526	48.3	LOS D	11.5	82.9	0.93	0.81	0.93	45.8
8	T1	198	5	208	2.5	0.352	34.6	LOS C	9.4	67.5	0.82	0.69	0.82	47.0
Approac	ch	409	13	431	3.2	0.526	41.6	LOS D	11.5	82.9	0.88	0.75	0.88	46.4
West: N	lorman Sm	nith St W												
10	L2	6	0	6	0.0	0.015	42.9	LOS D	0.3	2.0	0.80	0.65	0.80	46.4
11	T1	357	13	376	3.6	* 1.112	169.7	LOS F	78.5	563.6	1.00	1.59	2.07	16.8
12	R2	280	6	295	2.1	1.112	174.3	LOS F	78.5	563.6	1.00	1.59	2.07	16.9
Approac	ch	643	19	677	3.0	1.112	170.5	LOS F	78.5	563.6	1.00	1.58	2.06	17.4
All Vehic	cles	2868	62	3019	2.2	1.133	87.4	LOS F	78.5	563.6	0.60	1.01	1.11	37.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	strian Moven	nent Performa	ance									
Mov ID	Crossing	Input Vol. ped/h	Dem. Flow ped/h	Aver. Delay sec	Level of Service	AVERAGE BACK [Ped ped	OF QUEUE Dist] m	Prop. Que	Effective Ti Stop Rate	ravel Time sec	Travel Dist. m	Aver. Speed m/sec
East:	New Bridge											
P2	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	216.3	210.6	0.97
North	: Wairakei Dr N											
P3	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	80.3	33.9	0.42
West:	Norman Smith	St W										
P4	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	78.8	31.9	0.40
All Pe	edestrians	50	158	54.3	LOS E	0.2	0.2	0.95	0.95	125.1	92.1	0.74

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Tuesday, 23 April 2024 8:45:07 am
Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

Site: 102v [Norman / Wairakei 2033 PM Base Option B1 (Site Folder: 2033 Option B1)]

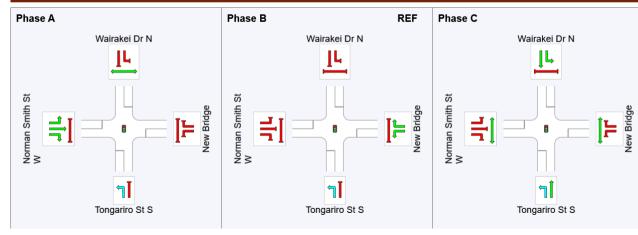
New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Opposed Turns Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Summary

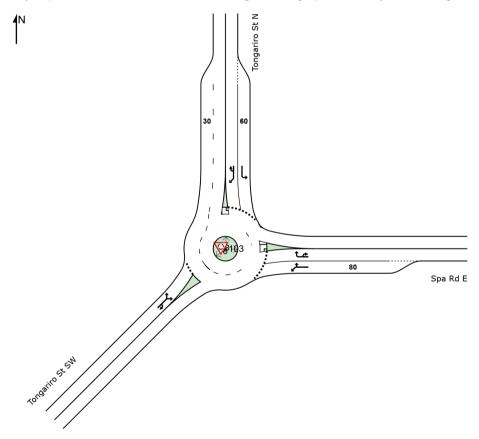
Phase	Α	В	С
Phase Change Time (sec)	75	0	32
Green Time (sec)	39	26	37
Phase Time (sec)	45	32	43
Phase Split	38%	27%	36%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Tuesday, 23 April 2024 8:45:07 am
Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

▼ Site: 103 [Spa / Tongariro 2033 AM Base Option B1 (Site Folder: 2033 Option B1)]

New Site

Site Category: (None)

Roundabout

▼ Site: 103 [Spa / Tongariro 2033 AM Base Option B1 (Site Folder: 2033 Option B1)]

New Site

Site Category: (None)

Roundabout

Vehicle	Moveme	ent Perform	ance											
Mov ID	Turn	INPUT V([Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Sp	a Rd E													
4a	L1	37	0	39	0.0	0.112	7.8	LOS A	0.6	4.2	0.65	0.75	0.65	43.9
6	R2	369	18	388	4.9	0.368	10.6	LOS B	2.5	18.5	0.72	0.79	0.72	44.3
6u	U	1	1	1	100.0	0.368	15.6	LOS B	2.5	18.5	0.73	0.80	0.73	43.1
Approac	ch	407	19	428	4.7	0.368	10.4	LOS B	2.5	18.5	0.71	0.79	0.71	44.2
North: To	ongariro S	t N												
7	L2	410	6	432	1.5	0.328	4.9	LOS A	2.4	17.1	0.30	0.52	0.30	45.9
9a	R1	490	20	516	4.1	0.386	6.5	LOS A	3.1	22.5	0.30	0.57	0.30	44.9
9u	U	62	0	65	0.0	0.386	8.8	LOS A	3.1	22.5	0.30	0.57	0.30	46.3
Approac	h	962	26	1013	2.7	0.386	5.9	LOS A	3.1	22.5	0.30	0.54	0.30	45.4
SouthW	est: Tonga	riro St SW												
30a	L1	358	15	377	4.2	0.566	5.0	LOS A	4.1	29.7	0.72	0.81	0.83	29.2
32a	R1	64	0	67	0.0	0.566	7.4	LOS A	4.1	29.7	0.72	0.81	0.83	29.2
32u	U	1	0	1	0.0	0.566	8.8	LOS A	4.1	29.7	0.72	0.81	0.83	29.8
Approac	ch	423	15	445	3.5	0.566	5.3	LOS A	4.1	29.7	0.72	0.81	0.83	29.2
All Vehic	cles	1792	60	1886	3.3	0.566	6.8	LOS A	4.1	29.7	0.49	0.66	0.52	40.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

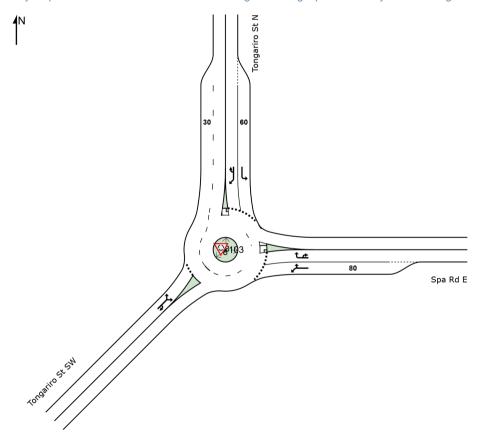
Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

▼ Site: 103 [Spa / Tongariro 2033 PM Base Option B1 (Site Folder: 2033 Option B1)]

New Site

Site Category: (None)

Roundabout

▼ Site: 103 [Spa / Tongariro 2033 PM Base Option B1 (Site Folder: 2033 Option B1)]

New Site

Site Category: (None)

Roundabout

Vehicle	Moveme	ent Perform	ance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Sp	a Rd E													
4a	L1	26	0	27	0.0	0.201	6.2	LOS A	1.0	7.4	0.55	0.72	0.55	44.1
6	R2	881	13	927	1.5	0.657	10.9	LOS B	6.8	48.2	0.71	0.78	0.79	44.3
6u	U	1	1	11	100.0	0.657	15.7	LOS B	6.8	48.2	0.74	0.79	0.82	43.0
Approac	ch	908	14	956	1.5	0.657	10.8	LOS B	6.8	48.2	0.71	0.78	0.78	44.3
North: To	ongariro S	it N												
7	L2	192	2	202	1.0	0.150	4.5	LOS A	1.0	7.0	0.14	0.51	0.14	46.2
9a	R1	244	9	257	3.7	0.215	6.2	LOS A	1.6	11.4	0.14	0.58	0.14	45.1
9u	U	88	0	93	0.0	0.215	8.8	LOS A	1.6	11.4	0.14	0.58	0.14	46.4
Approac	:h	524	11	552	2.1	0.215	6.0	LOS A	1.6	11.4	0.14	0.55	0.14	45.7
SouthW	est: Tonga	ariro St SW												
30a	L1	448	9	472	2.0	0.957	41.7	LOS D	17.9	127.3	1.00	2.26	3.11	22.5
32a	R1	19	0	20	0.0	0.957	43.2	LOS D	17.9	127.3	1.00	2.26	3.11	22.3
32u	U	1	0	1	0.0	0.957	44.6	LOS D	17.9	127.3	1.00	2.26	3.11	21.9
Approac	:h	468	9	493	1.9	0.957	41.8	LOS D	17.9	127.3	1.00	2.26	3.11	22.5
All Vehic	cles	1900	34	2000	1.8	0.957	17.1	LOS B	17.9	127.3	0.62	1.08	1.18	36.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

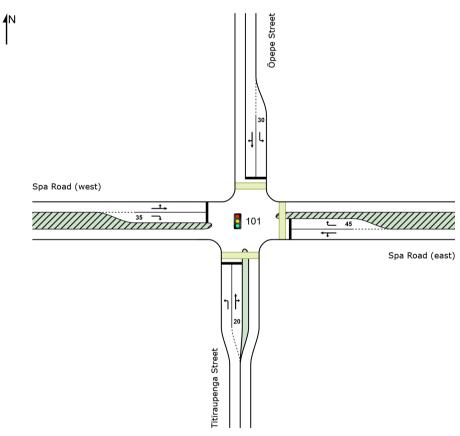
Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2033 AM Base Option B1 (Site Folder: 2033 Option

B1)]

New Site

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2033 AM Base Option B1 (Site Folder: 2033 Option

B1)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Vehicle	Movem	ent Perform	ance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: T	Γītīraupeng	ga Street												
1	L2	119	1	125	8.0	0.275	38.4	LOS D	5.5	38.6	0.79	0.75	0.79	33.9
2	T1	70	1	74	1.4	* 0.842	70.0	LOS E	5.3	37.6	1.00	0.93	1.40	31.5
3	R2	7	0	7	0.0	0.842	74.6	LOS E	5.3	37.6	1.00	0.93	1.40	43.9
Approac	ch	196	2	206	1.0	0.842	51.0	LOS D	5.5	38.6	0.87	0.82	1.03	34.2
East: Sp	oa Road (e	east)												
4	L2	10	0	11	0.0	* 0.741	47.9	LOS D	16.5	120.5	0.92	0.82	0.97	46.3
5	T1	290	16	305	5.5	0.741	41.7	LOS D	16.5	120.5	0.92	0.82	0.97	46.2
6	R2	180	9	189	5.0	0.528	51.5	LOS D	10.1	73.5	0.95	0.81	0.95	45.6
Approac	ch	480	25	505	5.2	0.741	45.5	LOS D	16.5	120.5	0.93	0.82	0.96	45.9
North: Ō	pepe Stre	et												
7	L2	502	23	528	4.6	* 1.630	608.0	LOS F	108.3	787.9	1.00	2.31	4.07	22.8
8	T1	459	3	483	0.7	* 1.710	690.3	LOS F	115.3	811.9	1.00	3.13	4.29	7.2
9	R2	4	0	4	0.0	1.710	694.9	LOS F	115.3	811.9	1.00	3.13	4.29	6.8
Approac	ch	965	26	1016	2.7	1.710	647.5	LOS F	115.3	811.9	1.00	2.71	4.17	16.7
West: S	pa Road (west)												
10	L2	1	0	1	0.0	0.177	38.1	LOS D	4.3	31.1	0.76	0.61	0.76	38.9
11	T1	95	5	100	5.3	0.177	31.7	LOS C	4.3	31.1	0.76	0.61	0.76	47.0
12	R2	26	0	27	0.0	0.074	46.4	LOS D	1.3	9.1	0.84	0.70	0.84	31.7
Approac	ch	122	5	128	4.1	0.177	34.9	LOS C	4.3	31.1	0.78	0.63	0.78	46.1
All Vehic	cles	1763	58	1856	3.3	1.710	374.9	LOS F	115.3	811.9	0.95	1.84	2.71	24.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	strian Move	ment Performa	ance									
Mov ID	Crossing	Input Vol. ped/h	Dem. Flow ped/h	Aver. Delay sec	Level of Service	AVERAGE BACK [Ped ped	OF QUEUE Dist] m	Prop. Que	Effective Tr Stop Rate	avel Time sec	Travel Dist. m	Aver. Speed m/sec
South	ı: Tītīraupenga	Street										
P1	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	230.3	228.8	0.99
East:	Spa Road (ea	st)										
P2	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	221.0	216.8	0.98
North	: Ōpepe Stree	t										
P3	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	218.8	213.9	0.98
All Pe	edestrians	150	158	54.3	LOS E	0.2	0.2	0.95	0.95	223.4	219.8	0.98

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 12:49:24 pm

Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2033 AM Base Option B1 (Site Folder: 2033 Option

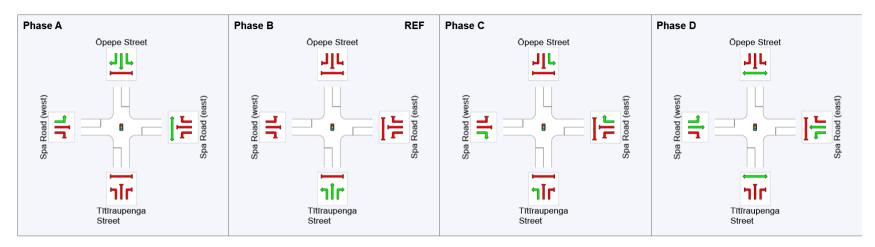
B1)]

New Site

Site Category: (None)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program Phase Sequence: Leading Right Turn Reference Phase: Phase B


Input Phase Sequence: A, B, C, D Output Phase Sequence: A, B, C, D

Phase Timing Summary

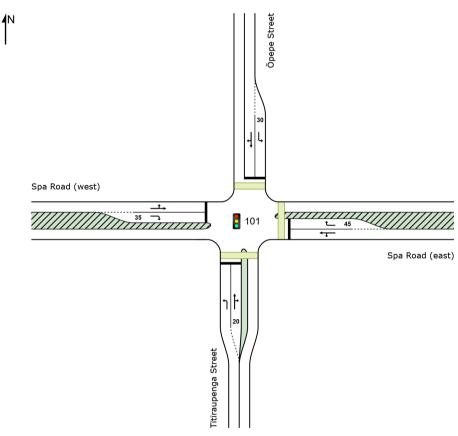
Phase	Α	В	С	D
Phase Change Time (sec)	85	0	12	42
Green Time (sec)	29	6	24	37
Phase Time (sec)	35	12	30	43
Phase Split	29%	10%	25%	36%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 12:49:24 pm
Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2033 PM Base Option B1 (Site Folder: 2033 Option

B1)]

New Site

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2033 PM Base Option B1 (Site Folder: 2033 Option

B1)]

New Site

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Vehicle	Moveme	ent Performa	nce											
Mov ID	Turn	INPUT VO	LUMES HV]	DEMAND [Total	FLOWS HV]	Deg. Satn	Aver. Delay	Level of Service	95% BACK [Veh.	OF QUEUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m	-, -:: -			km/h
South: T	ītīraupeng	a Street												
1	L2	184	1	194	0.5	0.521	41.6	LOS D	9.1	63.8	0.85	0.78	0.85	33.0
2	T1	136	1	143	0.7	* 1.152	208.0	LOS F	18.8	132.1	1.00	1.54	2.49	17.8
3	R2	8	0	8	0.0	1.152	212.6	LOS F	18.8	132.1	1.00	1.54	2.49	35.2
Approac	h	328	2	345	0.6	1.152	114.8	LOS F	18.8	132.1	0.91	1.11	1.57	23.9
East: Sp	a Road (e	ast)												
4	L2	5	0	5	0.0	* 0.792	49.0	LOS D	17.1	124.0	0.90	0.86	1.01	46.2
5	T1	300	12	316	4.0	0.792	42.8	LOS D	17.1	124.0	0.90	0.86	1.01	46.1
6	R2	226	8	238	3.5	* 1.129	193.5	LOS F	28.1	202.9	1.00	1.41	2.31	36.4
Approac	h	531	20	559	3.8	1.129	107.0	LOS F	28.1	202.9	0.94	1.09	1.56	41.3
North: Ō	pepe Stre	et												
7	L2	279	18	294	6.5	1.255	279.9	LOS F	39.0	287.7	1.00	1.64	2.85	31.7
8	T1	356	2	375	0.6	* 1.140	199.0	LOS F	47.1	331.2	1.00	1.82	2.31	18.4
9	R2	1	0	1	0.0	1.140	203.5	LOS F	47.1	331.2	1.00	1.82	2.31	17.6
Approac	h	636	20	669	3.1	1.255	234.5	LOS F	47.1	331.2	1.00	1.74	2.55	27.4
West: Sp	oa Road (v	vest)												
10	L2	1	0	1	0.0	0.300	39.6	LOS D	7.8	55.3	0.80	0.66	0.80	38.5
11	T1	168	2	177	1.2	0.300	33.2	LOS C	7.8	55.3	0.80	0.66	0.80	46.9
12	R2	83	0	87	0.0	0.353	56.7	LOS E	4.8	33.4	0.95	0.77	0.95	29.4
Approac	h	252	2	265	0.8	0.353	40.9	LOS D	7.8	55.3	0.85	0.70	0.85	44.9
All Vehic	les	1747	44	1839	2.5	1.255	145.3	LOS F	47.1	331.2	0.95	1.27	1.82	34.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	strian Move	ment Performa	ance									
Mov ID	Crossing	Input Vol. ped/h	Dem. Flow ped/h	Aver. Delay sec	Level of Service	AVERAGE BACK [Ped ped	OF QUEUE Dist] m	Prop. Que	Effective Tr Stop Rate	avel Time sec	Travel Dist. m	Aver. Speed m/sec
South	ı: Tītīraupenga	Street										
P1	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	230.3	228.8	0.99
East:	Spa Road (ea	st)										
P2	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	221.0	216.8	0.98
North	: Ōpepe Stree	t										
P3	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	218.8	213.9	0.98
All Pe	edestrians	150	158	54.3	LOS E	0.2	0.2	0.95	0.95	223.4	219.8	0.98

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 12:49:25 pm

Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2033 PM Base Option B1 (Site Folder: 2033 Option

B1)]

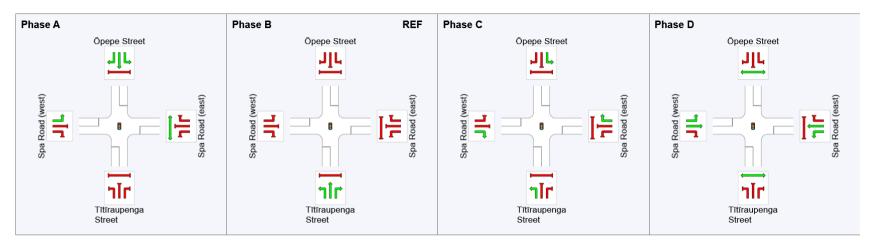
New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program Phase Sequence: Leading Right Turn Reference Phase: Phase B


Input Phase Sequence: A, B, C, D
Output Phase Sequence: A, B, C, D

Phase Timing Summary

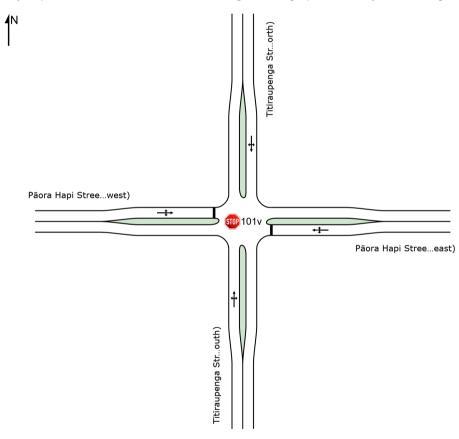
Phase	Α	В	С	D
Phase Change Time (sec)	83	0	18	40
Green Time (sec)	31	12	16	37
Phase Time (sec)	37	18	22	43
Phase Split	31%	15%	18%	36%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 12:49:25 pm
Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

Site 404 (De

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2033 AM Base Option B1 (Site Folder: 2033 Option

B1)]

New Site Site Category: (None) Stop (Two-Way)

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2033 AM Base Option B1 (Site Folder: 2033 Option B1)]

New Site

Site Category: (None) Stop (Two-Way)

Vehicle	Movem	ent Perform	nance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	Γītīraupenǫ	ga Street (sou	uth)											
1	L2	164	1	173	0.6	0.236	4.8	LOS A	0.2	1.3	0.05	0.21	0.05	39.5
2	T1	246	2	259	8.0	0.236	0.2	LOS A	0.2	1.3	0.05	0.21	0.05	47.7
3	R2	9	0	9	0.0	0.236	7.7	LOS A	0.2	1.3	0.05	0.21	0.05	46.1
Approac	ch	419	3	441	0.7	0.236	2.1	NA	0.2	1.3	0.05	0.21	0.05	44.2
East: Pa	āora Hapi :	Street (east)												
4	L2	18	0	19	0.0	0.174	10.6	LOS B	0.6	4.1	0.72	1.01	0.72	36.9
5	T1	39	0	41	0.0	0.174	18.2	LOS C	0.6	4.1	0.72	1.01	0.72	28.8
6	R2	4	0	4	0.0	0.174	17.4	LOS C	0.6	4.1	0.72	1.01	0.72	34.3
Approac	ch	61	0	64	0.0	0.174	15.9	LOS C	0.6	4.1	0.72	1.01	0.72	31.5
North: T	ītīraupeng	ja Street (nor	th)											
7	L2	7	0	7	0.0	0.311	6.6	LOS A	0.3	2.4	0.07	0.03	0.08	48.2
8	T1	527	2	555	0.4	0.311	0.2	LOS A	0.3	2.4	0.07	0.03	0.08	49.4
9	R2	24	0	25	0.0	0.311	6.9	LOS A	0.3	2.4	0.07	0.03	0.08	38.3
Approac	ch	558	2	587	0.4	0.311	0.5	NA	0.3	2.4	0.07	0.03	0.08	48.9
West: P	āora Hapi	Street (west)												
10	L2	25	0	26	0.0	0.503	10.7	LOS B	2.2	15.8	0.77	1.17	1.16	26.0
11	T1	14	0	15	0.0	0.503	20.1	LOS C	2.2	15.8	0.77	1.17	1.16	25.2
12	R2	105	1	111	1.0	0.503	23.9	LOS C	2.2	15.8	0.77	1.17	1.16	28.3
Approac	ch	144	1	152	0.7	0.503	21.3	LOS C	2.2	15.8	0.77	1.17	1.16	27.7
All Vehi	cles	1182	6	1244	0.5	0.503	4.4	NA	2.2	15.8	0.18	0.28	0.23	42.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

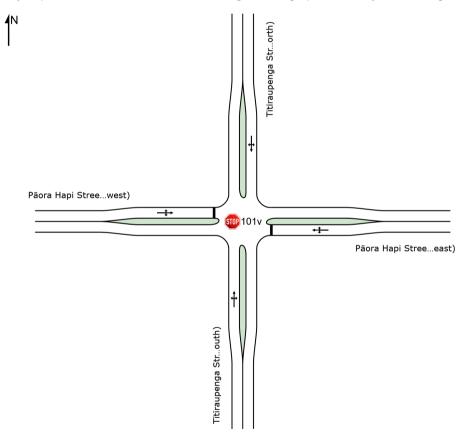
Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 7:54:33 am


Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2033 PM Base Option B1 (Site Folder: 2033 Option

B1)]

New Site Site Category: (None) Stop (Two-Way)

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2033 PM Base Option B1 (Site Folder: 2033 Option B1)]

New Site

Site Category: (None) Stop (Two-Way)

Vehicle	Movem	ent Perform	nance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	Γītīraupenç	ga Street (sou	uth)											
1	L2	30	1	32	3.3	0.187	5.3	LOS A	0.1	1.0	0.05	0.06	0.05	40.6
2	T1	299	1	315	0.3	0.187	0.1	LOS A	0.1	1.0	0.05	0.06	0.05	49.2
3	R2	8	0	8	0.0	0.187	7.1	LOS A	0.1	1.0	0.05	0.06	0.05	47.5
Approac	ch	337	2	355	0.6	0.187	0.7	NA	0.1	1.0	0.05	0.06	0.05	48.3
East: Pa	āora Hapi :	Street (east)												
4	L2	12	0	13	0.0	0.099	10.1	LOS B	0.3	2.3	0.65	0.99	0.65	38.0
5	T1	21	0	22	0.0	0.099	15.2	LOS C	0.3	2.3	0.65	0.99	0.65	29.6
6	R2	7	0	7	0.0	0.099	17.2	LOS C	0.3	2.3	0.65	0.99	0.65	35.5
Approac	ch	40	0	42	0.0	0.099	14.0	LOS B	0.3	2.3	0.65	0.99	0.65	33.1
North: T	ītīraupeng	ja Street (nor	th)											
7	L2	10	0	11	0.0	0.286	5.9	LOS A	0.3	2.0	0.07	0.04	0.07	48.2
8	T1	483	1	508	0.2	0.286	0.1	LOS A	0.3	2.0	0.07	0.04	0.07	49.4
9	R2	23	0	24	0.0	0.286	6.3	LOS A	0.3	2.0	0.07	0.04	0.07	38.3
Approac	ch	516	1	543	0.2	0.286	0.5	NA	0.3	2.0	0.07	0.04	0.07	48.8
West: P	āora Hapi	Street (west)												
10	L2	30	0	32	0.0	0.557	11.3	LOS B	2.8	19.5	0.78	1.23	1.28	26.5
11	T1	15	0	16	0.0	0.557	19.4	LOS C	2.8	19.5	0.78	1.23	1.28	25.6
12	R2	137	1	144	0.7	0.557	22.1	LOS C	2.8	19.5	0.78	1.23	1.28	28.8
Approac	ch	182	1	192	0.5	0.557	20.1	LOS C	2.8	19.5	0.78	1.23	1.28	28.2
All Vehi	cles	1075	4	1132	0.4	0.557	4.4	NA	2.8	19.5	0.20	0.28	0.29	43.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

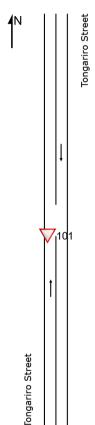
Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 7:54:34 am

Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

▽ Site: 101 [TCG Bridge 2033 AM (Site Folder: 2033 Option B1)]

New Site

Site Category: (None) Give-Way (Two-Way)

▽ Site: 101 [TCG Bridge 2033 AM (Site Folder: 2033 Option B1)]

New Site

Site Category: (None) Give-Way (Two-Way)

Vehicle	Movem	ent Perform	ance											
Mov ID	Turn	INPUT V0 [Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: T	ongariro S	Street												
2	T1	659	5.0	694	5.0	0.367	4.3	LOS A	0.0	0.0	0.00	0.53	0.00	54.5
Approac	ch	659	5.0	694	5.0	0.367	4.3	NA	0.0	0.0	0.00	0.53	0.00	54.5
North: T	ongariro S	Street												
8	T1	986	5.0	1038	5.0	0.550	4.4	LOS A	0.0	0.0	0.00	0.53	0.00	54.4
Approac	ch	986	5.0	1038	5.0	0.550	4.4	NA	0.0	0.0	0.00	0.53	0.00	54.4
All Vehic	cles	1645	5.0	1732	5.0	0.550	4.4	NA	0.0	0.0	0.00	0.53	0.00	54.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

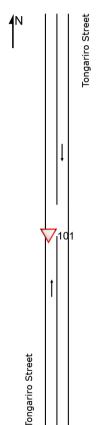
Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 7:54:35 am

Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

▽ Site: 101 [TCG Bridge 2033 PM (Site Folder: 2033 Option B1)]

New Site

Site Category: (None) Give-Way (Two-Way)

▽ Site: 101 [TCG Bridge 2033 PM (Site Folder: 2033 Option B1)]

New Site

Site Category: (None) Give-Way (Two-Way)

Vehicle	Movemo	ent Perform	ance											
Mov ID	Turn	INPUT V0 [Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: T	Tongariro S	Street												
2	T1	1417	5.0	1492	5.0	0.790	4.8	LOS A	0.0	0.0	0.00	0.52	0.00	53.7
Approac	ch	1417	5.0	1492	5.0	0.790	4.8	NA	0.0	0.0	0.00	0.52	0.00	53.7
North: T	ongariro S	Street												
8	T1	478	5.0	503	5.0	0.266	4.2	LOS A	0.0	0.0	0.00	0.53	0.00	54.6
Approac	ch	478	5.0	503	5.0	0.266	4.2	NA	0.0	0.0	0.00	0.53	0.00	54.6
All Vehic	cles	1895	5.0	1995	5.0	0.790	4.7	NA	0.0	0.0	0.00	0.52	0.00	53.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

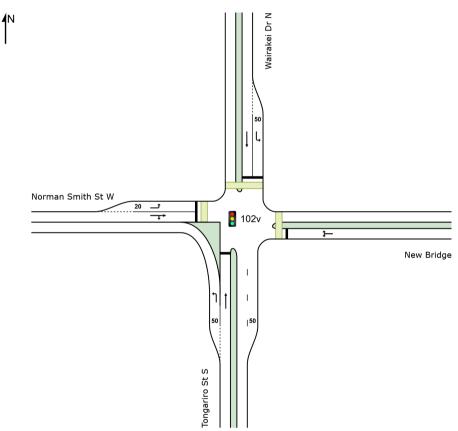
Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 7:54:35 am


Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

Site: 102v [Norman / Wairakei 2033 AM Base Option B2 (Site Folder: 2033 Option B2)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Site: 102v [Norman / Wairakei 2033 AM Base Option B2 (Site Folder: 2033 Option B2)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Vehicle	e Movem	ent Perform	ance											
Mov ID	Turn	INPUT Vo [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: 7	Tongariro S	St S												
1	L2	413	21	435	5.1	0.243	4.5	LOS A	0.0	0.0	0.00	0.46	0.00	48.1
2	T1	87	7	92	8.0	0.165	33.1	LOS C	3.9	29.3	0.77	0.62	0.77	47.1
Approac	ch	500	28	526	5.6	0.243	9.5	LOS A	3.9	29.3	0.13	0.49	0.13	47.6
East: Ne	ew Bridge													
4	L2	1	0	1	0.0	1.500	507.3	LOS F	62.8	458.7	1.00	2.06	3.72	6.2
6	R2	294	15	309	5.1	* 1.500	507.3	LOS F	62.8	458.7	1.00	2.06	3.72	25.3
Approac	ch	295	15	311	5.1	1.500	507.3	LOS F	62.8	458.7	1.00	2.06	3.72	25.3
North: V	Vairakei D	r N												
7	L2	423	13	445	3.1	* 1.563	563.5	LOS F	95.3	684.7	1.00	2.23	3.89	24.1
8	T1	459	14	483	3.1	1.226	268.2	LOS F	71.6	514.5	1.00	2.20	2.67	33.1
Approac	ch	882	27	928	3.1	1.563	409.8	LOS F	95.3	684.7	1.00	2.21	3.26	28.1
West: N	Iorman Sm	nith St W												
10	L2	8	0	8	0.0	0.015	34.9	LOS C	0.3	2.3	0.72	0.64	0.72	47.0
11	T1	737	14	776	1.9	* 1.568	560.2	LOS F	278.1	1977.1	1.00	2.82	3.84	6.7
12	R2	475	8	500	1.7	1.568	564.8	LOS F	278.1	1977.1	1.00	2.82	3.84	6.8
Approac	ch	1220	22	1284	1.8	1.568	558.5	LOS F	278.1	1977.1	1.00	2.81	3.82	7.0
All Vehic	cles	2897	92	3049	3.2	1.568	413.3	LOS F	278.1	1977.1	0.85	2.15	3.00	20.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	strian Mover	nent Perform	ance									
Mov ID	Crossing	Input Vol. ped/h	Dem. Flow ped/h	Aver. Delay sec	Level of Service	AVERAGE BAC [Ped ped	K OF QUEUE Dist] m	Prop. Que	Effective Tr Stop Rate	ravel Time sec	Travel Dist. m	Aver. Speed m/sec
East:	New Bridge	p 0 si, 1 1	p 0 a)			702						11555
P2	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	216.3	210.6	0.97
North	: Wairakei Dr N	l										
P3	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	80.3	33.9	0.42
West: Norman Smith St W												
P4	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	78.8	31.9	0.40
All Pe	destrians	50	158	54.3	LOS E	0.2	0.2	0.95	0.95	125.1	92.1	0.74

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Tuesday, 23 April 2024 8:46:47 am
Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

Site: 102v [Norman / Wairakei 2033 AM Base Option B2 (Site Folder: 2033 Option B2)]

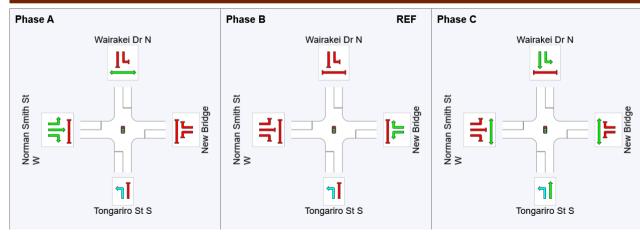
New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Opposed Turns Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Summary

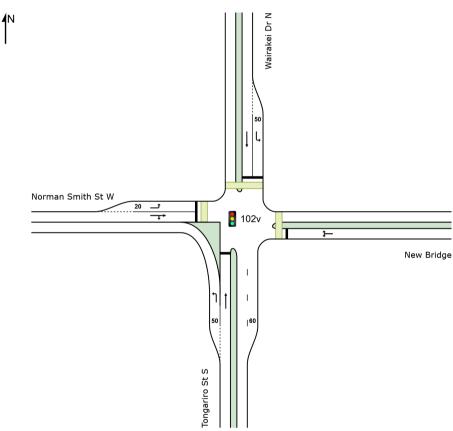
Phase	Α	В	С
Phase Change Time (sec)	62	0	20
Green Time (sec)	52	14	36
Phase Time (sec)	58	20	42
Phase Split	48%	17%	35%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Tuesday, 23 April 2024 8:46:47 am
Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

Site: 102v [Norman / Wairakei 2033 PM Base Option B2 (Site Folder: 2033 Option B2)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Site: 102v [Norman / Wairakei 2033 PM Base Option B2 (Site Folder: 2033 Option B2)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Vehicle	Movem	ent Perform	ance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: T	Tongariro S	St S												
1	L2	1098	19	1156	1.7	0.630	4.8	LOS A	0.0	0.0	0.00	0.46	0.00	47.8
2	T1	59	0	62	0.0	0.147	40.9	LOS D	2.9	20.6	0.85	0.65	0.85	46.5
Approac	ch	1157	19	1218	1.6	0.630	6.6	LOS A	2.9	20.6	0.04	0.47	0.04	47.4
East: Ne	ew Bridge													
4	L2	1	0	1	0.0	1.174	224.8	LOS F	96.3	684.3	1.00	1.52	2.38	12.1
6	R2	680	12	716	1.8	* 1.174	224.8	LOS F	96.3	684.3	1.00	1.52	2.38	35.0
Approac	ch	681	12	717	1.8	1.174	224.8	LOS F	96.3	684.3	1.00	1.52	2.38	35.0
North: V	Vairakei D	r N												
7	L2	271	8	285	3.0	* 1.178	232.3	LOS F	37.6	269.7	1.00	1.55	2.51	34.6
8	T1	134	4	141	3.0	0.340	43.1	LOS D	7.0	50.4	0.89	0.72	0.89	46.3
Approac	ch	405	12	426	3.0	1.178	169.7	LOS F	37.6	269.7	0.96	1.28	1.97	37.7
West: N	lorman Sm	nith St W												
10	L2	6	0	6	0.0	0.019	48.4	LOS D	0.3	2.1	0.85	0.65	0.85	46.0
11	T1	491	16	517	3.3	* 1.207	247.8	LOS F	96.4	692.1	1.00	1.99	2.53	12.9
12	R2	154	3	162	1.9	1.207	252.4	LOS F	96.4	692.1	1.00	1.99	2.53	13.0
Approac	ch	651	19	685	2.9	1.207	247.1	LOS F	96.4	692.1	1.00	1.98	2.52	13.4
All Vehic	cles	2894	62	3046	2.1	1.207	134.9	LOS F	96.4	692.1	0.61	1.17	1.42	33.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	strian Mover	nent Perform	ance									
Mov ID	Crossing	Input Vol. ped/h	Dem. Flow ped/h	Aver. Delay sec	Level of Service	AVERAGE BAC [Ped ped	K OF QUEUE Dist] m	Prop. Que	Effective Tr Stop Rate	ravel Time sec	Travel Dist. m	Aver. Speed m/sec
East:	New Bridge	p 0 si, 1 1	p 0 a)			702						11555
P2	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	216.3	210.6	0.97
North	: Wairakei Dr N	l										
P3	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	80.3	33.9	0.42
West: Norman Smith St W												
P4	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	78.8	31.9	0.40
All Pe	destrians	50	158	54.3	LOS E	0.2	0.2	0.95	0.95	125.1	92.1	0.74

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Tuesday, 23 April 2024 8:46:47 am
Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

Site: 102v [Norman / Wairakei 2033 PM Base Option B2 (Site Folder: 2033 Option B2)]

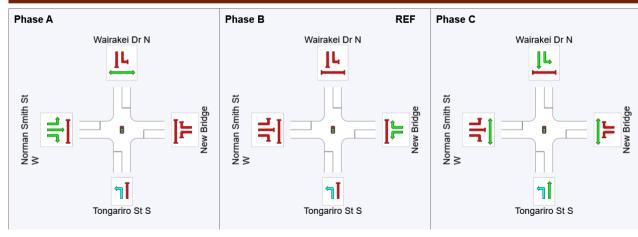
New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Opposed Turns Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Summary

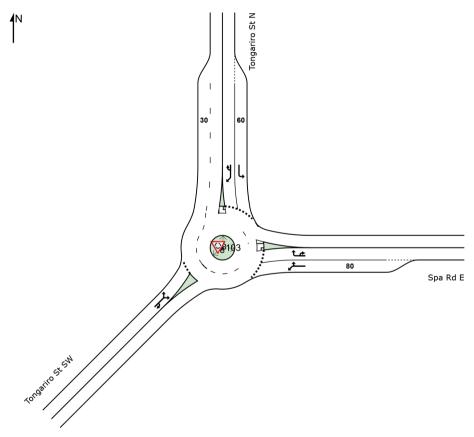
Phase	Α	В	С
Phase Change Time (sec)	78	0	46
Green Time (sec)	36	40	26
Phase Time (sec)	42	46	32
Phase Split	35%	38%	27%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Tuesday, 23 April 2024 8:46:47 am
Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

▼ Site: 103 [Spa / Tongariro 2033 AM Base Option B2 (Site Folder: 2033 Option B2)]

New Site

Site Category: (None)

Roundabout

▼ Site: 103 [Spa / Tongariro 2033 AM Base Option B2 (Site Folder: 2033 Option B2)]

New Site

Site Category: (None)

Roundabout

Vehicle	Moveme	ent Perform	ance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Sp	a Rd E													
4a	L1	28	0	29	0.0	0.102	8.3	LOS A	0.5	3.9	0.68	0.76	0.68	43.4
6	R2	323	15	340	4.6	0.335	11.0	LOS B	2.3	16.8	0.74	0.81	0.74	44.1
6u	U	1	1	1	100.0	0.335	16.2	LOS B	2.3	16.8	0.75	0.81	0.75	42.9
Approac	ch	352	16	371	4.5	0.335	10.8	LOS B	2.3	16.8	0.74	0.80	0.74	44.0
North: To	ongariro S	t N												
7	L2	299	4	315	1.3	0.260	4.9	LOS A	1.7	12.1	0.28	0.52	0.28	45.9
9a	R1	555	18	584	3.2	0.424	6.5	LOS A	3.5	25.1	0.31	0.57	0.31	44.9
9u	U	58	0	61	0.0	0.424	8.8	LOS A	3.5	25.1	0.31	0.57	0.31	46.3
Approac	ch	912	22	960	2.4	0.424	6.1	LOS A	3.5	25.1	0.30	0.55	0.30	45.4
SouthW	est: Tonga	riro St SW												
30a	L1	254	14	267	5.5	0.412	3.1	LOS A	2.3	16.7	0.61	0.62	0.61	29.5
32a	R1	64	0	67	0.0	0.412	5.6	LOS A	2.3	16.7	0.61	0.62	0.61	29.6
32u	U	1	0	1	0.0	0.412	7.0	LOS A	2.3	16.7	0.61	0.62	0.61	30.3
Approac	ch	319	14	336	4.4	0.412	3.6	LOS A	2.3	16.7	0.61	0.62	0.61	29.6
All Vehic	cles	1583	52	1666	3.3	0.424	6.6	LOS A	3.5	25.1	0.46	0.62	0.46	40.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

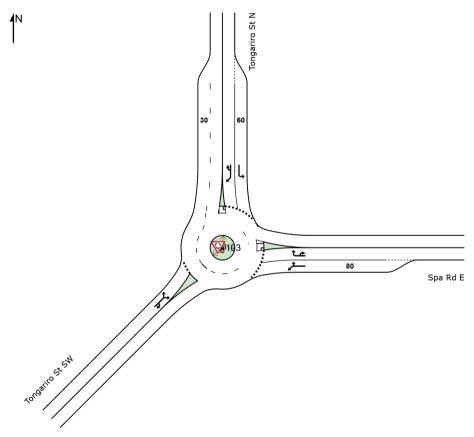
Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

▼ Site: 103 [Spa / Tongariro 2033 PM Base Option B2 (Site Folder: 2033 Option B2)]

New Site

Site Category: (None)

Roundabout

▼ Site: 103 [Spa / Tongariro 2033 PM Base Option B2 (Site Folder: 2033 Option B2)]

New Site

Site Category: (None)

Roundabout

Vehicle	Moveme	ent Perform	ance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Sp	a Rd E													
4a	L1	36	0	38	0.0	0.148	5.5	LOS A	0.7	5.3	0.49	0.66	0.49	44.7
6	R2	662	13	697	2.0	0.484	8.9	LOS A	3.5	25.2	0.56	0.68	0.56	45.0
6u	U	1	1	1	100.0	0.484	12.8	LOS B	3.5	25.2	0.57	0.69	0.57	43.8
Approac	ch	699	14	736	2.0	0.484	8.8	LOS A	3.5	25.2	0.55	0.68	0.55	45.0
North: To	ongariro S	t N												
7	L2	40	0	42	0.0	0.042	4.6	LOS A	0.2	1.6	0.15	0.50	0.15	46.2
9a	R1	212	6	223	2.8	0.176	6.2	LOS A	1.2	8.7	0.15	0.58	0.15	45.2
9u	U	56	0	59	0.0	0.176	8.7	LOS A	1.2	8.7	0.15	0.58	0.15	46.5
Approac	:h	308	6	324	1.9	0.176	6.4	LOS A	1.2	8.7	0.15	0.57	0.15	45.6
SouthW	est: Tonga	ariro St SW												
30a	L1	449	6	473	1.3	0.753	11.6	LOS B	7.4	52.1	0.90	1.22	1.39	27.8
32a	R1	22	0	23	0.0	0.753	13.8	LOS B	7.4	52.1	0.90	1.22	1.39	27.7
32u	U	1	0	1	0.0	0.753	15.2	LOS B	7.4	52.1	0.90	1.22	1.39	28.1
Approac	:h	472	6	497	1.3	0.753	11.7	LOS B	7.4	52.1	0.90	1.22	1.39	27.8
All Vehic	cles	1479	26	1557	1.8	0.753	9.2	LOSA	7.4	52.1	0.58	0.83	0.74	38.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

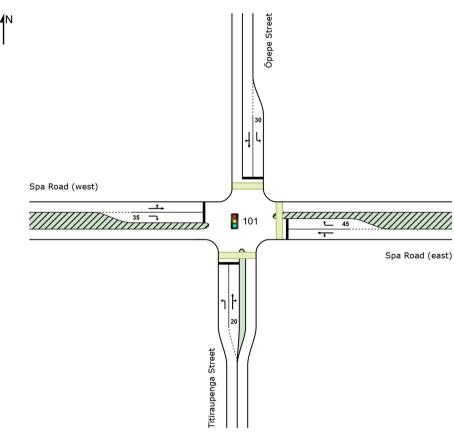
Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2033 AM Base Option B2 (Site Folder: 2033 Option

B2)]

New Site

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2033 AM Base Option B2 (Site Folder: 2033 Option

B2)]

New Site

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Vehicle	Moveme	ent Performa	nce											
Mov ID	Turn	INPUT VO		DEMAND [Total	FLOWS HV]	Deg. Satn	Aver.	Level of Service		OF QUEUE	Prop. Que	Effective Stop Rate	Aver. No.	Aver.
ID		veh/h	HV] veh/h	veh/h	нv ј %	v/c	Delay sec	Service	[Veh. veh	Dist] m	Que	Stop Rate	Cycles	Speed km/h
South: T	ītīraupeng													
1	L2	189	1	199	0.5	0.608	45.5	LOS D	9.8	69.2	0.89	0.79	0.89	32.1
2	T1	107	1	113	0.9	* 1.344	366.7	LOS F	20.5	144.6	1.00	1.74	3.27	13.4
3	R2	7	0	7	0.0	1.344	371.3	LOS F	20.5	144.6	1.00	1.74	3.27	28.6
Approac	h	303	2	319	0.7	1.344	166.4	LOS F	20.5	144.6	0.93	1.15	1.78	19.8
East: Sp	a Road (e	ast)												
4	L2	98	1	103	1.0	1.254	295.0	LOS F	97.2	705.7	1.00	2.20	2.76	31.6
5	T1	500	25	526	5.0	* 1.254	288.8	LOS F	97.2	705.7	1.00	2.20	2.76	31.4
6	R2	122	1	128	0.8	0.464	55.9	LOS E	7.0	49.5	0.96	0.79	0.96	45.4
Approac	h	720	27	758	3.8	1.254	250.2	LOS F	97.2	705.7	0.99	1.96	2.45	33.4
North: Ō	pepe Stre	et												
7	L2	40	1	42	2.5	* 0.173	35.2	LOS D	1.6	11.6	0.92	0.72	0.92	47.0
8	T1	60	1	63	1.7	0.163	42.0	LOS D	3.1	22.3	0.86	0.67	0.86	38.5
9	R2	2	0	2	0.0	0.163	46.5	LOS D	3.1	22.3	0.86	0.67	0.86	37.8
Approac	h	102	2	107	2.0	0.173	39.4	LOS D	3.1	22.3	0.88	0.69	0.88	44.3
West: Sp	oa Road (v	vest)												
10	L2	2	0	2	0.0	1.054	133.5	LOS F	68.3	495.4	1.00	1.53	1.79	25.3
11	T1	624	27	657	4.3	1.054	127.1	LOS F	68.3	495.4	1.00	1.53	1.79	39.8
12	R2	151	1	159	0.7	0.573	56.9	LOS E	8.9	62.4	0.98	0.81	0.98	29.3
Approac	h	777	28	818	3.6	1.054	113.5	LOS F	68.3	495.4	1.00	1.39	1.64	39.3
All Vehic	les	1902	59	2002	3.1	1.344	169.7	LOS F	97.2	705.7	0.98	1.53	1.93	34.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	strian Move	ment Performa	ance									
Mov ID	Crossing	Input Vol. ped/h	Dem. Flow ped/h	Aver. Delay sec	Level of Service	AVERAGE BACK [Ped ped	OF QUEUE Dist] m	Prop. Que	Effective Tr Stop Rate	avel Time sec	Travel Dist. m	Aver. Speed m/sec
South	ı: Tītīraupenga	Street										
P1	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	230.3	228.8	0.99
East:	Spa Road (ea	st)										
P2	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	221.0	216.8	0.98
North	: Ōpepe Stree	t										
P3	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	218.8	213.9	0.98
All Pe	edestrians	150	158	54.3	LOS E	0.2	0.2	0.95	0.95	223.4	219.8	0.98

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 12:47:43 pm

PHASING SUMMARY

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2033 AM Base Option B2 (Site Folder: 2033 Option

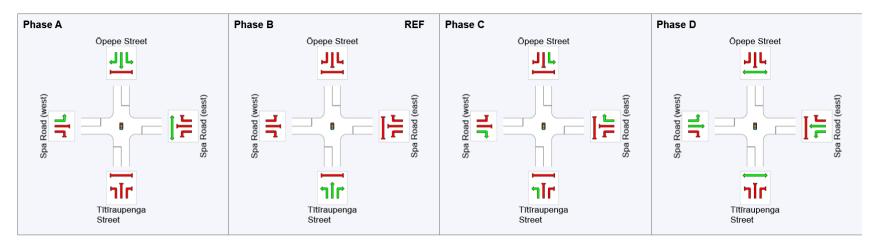
B2)]

New Site

Site Category: (None)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program Phase Sequence: Leading Right Turn Reference Phase: Phase B


Input Phase Sequence: A, B, C, D
Output Phase Sequence: A, B, C, D

Phase Timing Summary

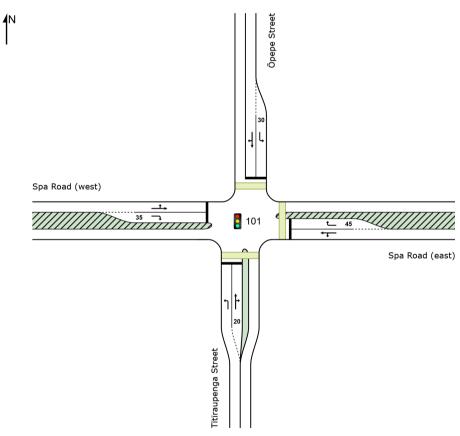
Phase	Α	В	С	D
Phase Change Time (sec)	89	0	12	36
Green Time (sec)	25	6	18	47
Phase Time (sec)	31	12	24	53
Phase Split	26%	10%	20%	44%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 12:47:43 pm
Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2033 PM Base Option B2 (Site Folder: 2033 Option

B2)]

New Site

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2033 PM Base Option B2 (Site Folder: 2033 Option

B2)]

New Site

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Vehicle	e Movemo	ent Perform	ance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	Tītīraupenç	ga Street												
1	L2	145	1	153	0.7	0.378	44.3	LOS D	7.3	51.6	0.86	0.78	0.86	32.3
2	T1	34	0	36	0.0	* 0.458	63.9	LOS E	2.7	18.9	1.00	0.73	1.00	34.3
3	R2	8	0	8	0.0	0.458	68.5	LOS E	2.7	18.9	1.00	0.73	1.00	44.3
Approac	ch	187	1	197	0.5	0.458	48.9	LOS D	7.3	51.6	0.89	0.77	0.89	34.6
East: S	pa Road (e	east)												
4	L2	59	0	62	0.0	1.117	179.6	LOS F	81.4	584.8	1.00	1.74	2.10	37.1
5	T1	593	20	624	3.4	* 1.117	173.4	LOS F	81.4	584.8	1.00	1.74	2.10	37.0
6	R2	22	1	23	4.5	0.086	52.3	LOS D	1.2	8.6	0.89	0.70	0.89	45.7
Approac	ch	674	21	709	3.1	1.117	170.0	LOS F	81.4	584.8	1.00	1.70	2.06	37.2
North: C	Dpepe Stre	et												
7	L2	45	1	47	2.2	* 0.194	35.4	LOS D	1.8	13.1	0.92	0.73	0.92	47.0
8	T1	87	0	92	0.0	0.228	42.6	LOS D	4.5	31.7	0.87	0.69	0.87	38.4
9	R2	1	0	1	0.0	0.228	47.2	LOS D	4.5	31.7	0.87	0.69	0.87	37.6
Approac	ch	133	1	140	0.8	0.228	40.2	LOS D	4.5	31.7	0.89	0.70	0.89	43.8
West: S	pa Road (west)												
10	L2	7	0	7	0.0	0.828	44.2	LOS D	29.8	215.7	0.92	0.88	1.00	38.9
11	T1	517	21	544	4.1	0.828	37.8	LOS D	29.8	215.7	0.92	0.88	1.00	46.5
12	R2	71	0	75	0.0	0.268	54.0	LOS D	3.9	27.6	0.93	0.76	0.93	30.0
Approac	ch	595	21	626	3.5	0.828	39.8	LOS D	29.8	215.7	0.92	0.87	0.99	45.9
All Vehi	cles	1589	44	1673	2.8	1.117	96.1	LOS F	81.4	584.8	0.95	1.20	1.42	40.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	strian Move	ment Performa	ance									
Mov ID	Crossing	Input Vol. ped/h	Dem. Flow ped/h	Aver. Delay sec	Level of Service	AVERAGE BACK [Ped ped	OF QUEUE Dist] m	Prop. Que	Effective Tr Stop Rate	avel Time sec	Travel Dist. m	Aver. Speed m/sec
South	ı: Tītīraupenga	Street										
P1	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	230.3	228.8	0.99
East:	Spa Road (ea	st)										
P2	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	221.0	216.8	0.98
North	: Ōpepe Stree	t										
P3	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	218.8	213.9	0.98
All Pe	edestrians	150	158	54.3	LOS E	0.2	0.2	0.95	0.95	223.4	219.8	0.98

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 12:47:44 pm

PHASING SUMMARY

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2033 PM Base Option B2 (Site Folder: 2033 Option

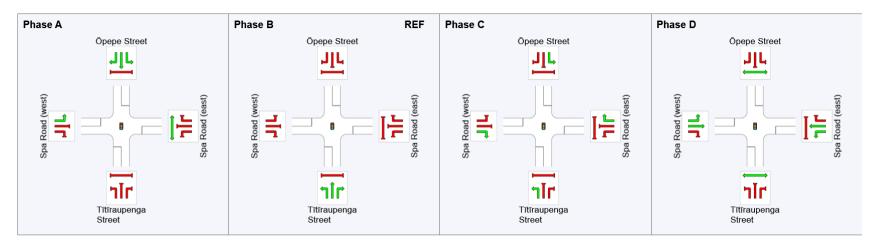
B2)]

New Site

Site Category: (None)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program Phase Sequence: Leading Right Turn Reference Phase: Phase B

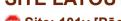

Input Phase Sequence: A, B, C, D Output Phase Sequence: A, B, C, D

Phase Timing Summary

Phase	Α	В	С	D
Phase Change Time (sec)	89	0	12	36
Green Time (sec)	25	6	18	47
Phase Time (sec)	31	12	24	53
Phase Split	26%	10%	20%	44%

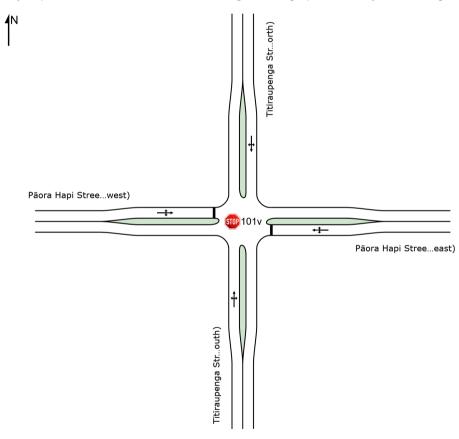
See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence



REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 12:47:44 pm
Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2033 AM Base Option B2 (Site Folder: 2033 Option

B2)]

New Site Site Category: (None) Stop (Two-Way)

B2)]

New Site Site Category: (None) Stop (Two-Way)

Vehicle	Move _m	ent Perform	nance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	Γītīraupenç	ga Street (sou	uth)											
1	L2	90	2	95	2.2	0.264	4.7	LOS A	0.1	0.9	0.03	0.11	0.03	40.3
2	T1	378	2	398	0.5	0.264	0.0	LOS A	0.1	0.9	0.03	0.11	0.03	48.8
3	R2	9	0	9	0.0	0.264	5.8	LOS A	0.1	0.9	0.03	0.11	0.03	47.2
Approac	ch	477	4	502	8.0	0.264	1.0	NA	0.1	0.9	0.03	0.11	0.03	47.0
East: Pa	āora Hapi 🤅	Street (east)												
4	L2	16	0	17	0.0	0.082	8.6	LOS A	0.3	2.0	0.51	0.96	0.51	39.3
5	T1	23	0	24	0.0	0.082	13.8	LOS B	0.3	2.0	0.51	0.96	0.51	30.7
6	R2	4	0	4	0.0	0.082	13.9	LOS B	0.3	2.0	0.51	0.96	0.51	36.9
Approac	ch	43	0	45	0.0	0.082	11.9	LOS B	0.3	2.0	0.51	0.96	0.51	34.5
North: T	ītīraupeng	a Street (nor	th)											
7	L2	3	0	3	0.0	0.165	6.7	LOS A	0.3	2.1	0.13	0.06	0.13	47.6
8	T1	257	3	271	1.2	0.165	0.3	LOS A	0.3	2.1	0.13	0.06	0.13	48.9
9	R2	24	0	25	0.0	0.165	6.9	LOS A	0.3	2.1	0.13	0.06	0.13	37.9
Approac	ch	284	3	299	1.1	0.165	1.0	NA	0.3	2.1	0.13	0.06	0.13	48.0
West: P	āora Hapi	Street (west)												
10	L2	21	0	22	0.0	0.765	16.6	LOS C	5.6	39.8	0.87	1.59	2.04	24.9
11	T1	18	0	19	0.0	0.765	22.3	LOS C	5.6	39.8	0.87	1.59	2.04	24.1
12	R2	239	3	252	1.3	0.765	25.1	LOS D	5.6	39.8	0.87	1.59	2.04	27.3
Approac	ch	278	3	293	1.1	0.765	24.3	LOS C	5.6	39.8	0.87	1.59	2.04	26.9
All Vehi	cles	1082	10	1139	0.9	0.765	7.4	NA	5.6	39.8	0.29	0.51	0.59	39.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

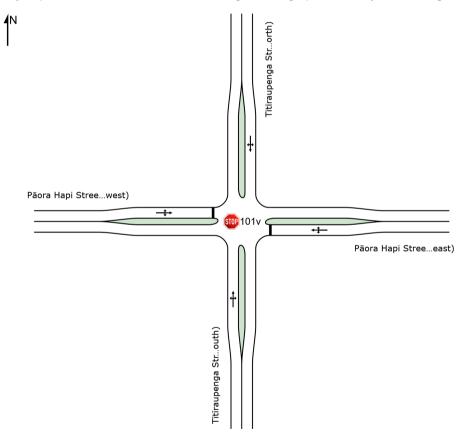
Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 7:54:42 am

511L LAIOU

site: 101v [Pāora Hapi/ Tītīraupenga Base 2033 PM Base Option B2 (Site Folder: 2033 Option

B2)]

New Site Site Category: (None) Stop (Two-Way)

B2)] New Site

Site Category: (None) Stop (Two-Way)

Vehicle	Moveme	ent Perforn	nance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	Γītīraupenç	ga Street (soi	uth)											
1	L2	41	1	43	2.4	0.133	4.8	LOS A	0.1	0.7	0.04	0.11	0.04	40.3
2	T1	191	1	201	0.5	0.133	0.1	LOS A	0.1	0.7	0.04	0.11	0.04	48.8
3	R2	8	0	8	0.0	0.133	5.6	LOS A	0.1	0.7	0.04	0.11	0.04	47.2
Approac	ch	240	2	253	8.0	0.133	1.0	NA	0.1	0.7	0.04	0.11	0.04	47.1
East: Pa	āora Hapi 🤅	Street (east)												
4	L2	9	0	9	0.0	0.060	8.5	LOS A	0.2	1.5	0.47	0.95	0.47	40.5
5	T1	23	0	24	0.0	0.060	10.6	LOS B	0.2	1.5	0.47	0.95	0.47	31.6
6	R2	7	0	7	0.0	0.060	11.2	LOS B	0.2	1.5	0.47	0.95	0.47	38.2
Approac	ch	39	0	41	0.0	0.060	10.2	LOS B	0.2	1.5	0.47	0.95	0.47	34.8
North: T	ītīraupeng	a Street (nor	th)											
7	L2	7	0	7	0.0	0.159	5.4	LOS A	0.2	1.6	0.09	0.06	0.09	47.8
8	T1	251	1	264	0.4	0.159	0.1	LOS A	0.2	1.6	0.09	0.06	0.09	49.0
9	R2	25	0	26	0.0	0.159	5.5	LOS A	0.2	1.6	0.09	0.06	0.09	38.0
Approac	ch	283	1	298	0.4	0.159	0.7	NA	0.2	1.6	0.09	0.06	0.09	48.0
West: P	āora Hapi	Street (west)												
10	L2	26	0	27	0.0	0.634	9.9	LOS A	4.6	32.1	0.68	1.32	1.26	28.8
11	T1	18	0	19	0.0	0.634	13.8	LOS B	4.6	32.1	0.68	1.32	1.26	27.9
12	R2	288	2	303	0.7	0.634	15.2	LOS C	4.6	32.1	0.68	1.32	1.26	30.9
Approac	ch	332	2	349	0.6	0.634	14.7	LOS B	4.6	32.1	0.68	1.32	1.26	30.7
All Vehi	cles	894	5	941	0.6	0.634	6.4	NA	4.6	32.1	0.31	0.58	0.53	39.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

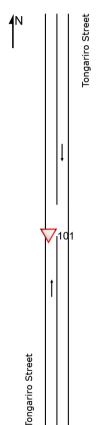
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.


SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 7:54:43 am

V Site: 101 [TCG Bridge 2033 AM (Site Folder: 2033 Option B2)]

New Site

Site Category: (None) Give-Way (Two-Way)

▽ Site: 101 [TCG Bridge 2033 AM (Site Folder: 2033 Option B2)]

New Site

Site Category: (None) Give-Way (Two-Way)

Vehicle	Moveme	ent Perform	ance											
Mov ID	Turn	INPUT V([Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: T	ongariro S	Street												
2	T1	500	5.0	526	5.0	0.279	4.3	LOS A	0.0	0.0	0.00	0.53	0.00	54.6
Approac	ch	500	5.0	526	5.0	0.279	4.3	NA	0.0	0.0	0.00	0.53	0.00	54.6
North: T	ongariro S	treet												
8	T1	934	5.0	983	5.0	0.521	4.4	LOS A	0.0	0.0	0.00	0.53	0.00	54.4
Approac	ch	934	5.0	983	5.0	0.521	4.4	NA	0.0	0.0	0.00	0.53	0.00	54.4
All Vehic	cles	1434	5.0	1509	5.0	0.521	4.3	NA	0.0	0.0	0.00	0.53	0.00	54.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

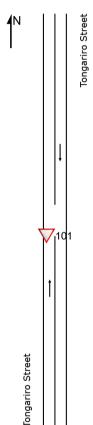
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.


SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 7:54:43 am

▽ Site: 101 [TCG Bridge 2033 PM (Site Folder: 2033 Option B2)]

New Site

Site Category: (None) Give-Way (Two-Way)

▽ Site: 101 [TCG Bridge 2033 PM (Site Folder: 2033 Option B2)]

New Site

Site Category: (None) Give-Way (Two-Way)

Vehicle	Moveme	ent Perform	ance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: T	ongariro S	Street												
2	T1	1158	5.0	1219	5.0	0.645	4.5	LOS A	0.0	0.0	0.00	0.53	0.00	54.2
Approac	ch	1158	5.0	1219	5.0	0.645	4.5	NA	0.0	0.0	0.00	0.53	0.00	54.2
North: T	ongariro S	treet												
8	T1	288	5.0	303	5.0	0.161	4.2	LOS A	0.0	0.0	0.00	0.53	0.00	54.7
Approac	ch	288	5.0	303	5.0	0.161	4.2	NA	0.0	0.0	0.00	0.53	0.00	54.7
All Vehic	cles	1446	5.0	1522	5.0	0.645	4.4	NA	0.0	0.0	0.00	0.53	0.00	54.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

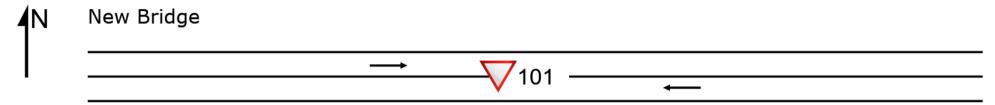
Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 7:54:44 am

▽ Site: 101 [New Bridge 2033 AM (Site Folder: 2033 Option B2)]

New Site

Site Category: (None) Give-Way (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

New Bridge

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Created: Tuesday, 23 April 2024 9:06:28 am

▽ Site: 101 [New Bridge 2033 AM (Site Folder: 2033 Option B2)]

New Site

Site Category: (None) Give-Way (Two-Way)

Vehicle	Movem	ent Perform	ance											
Mov ID	Turn	INPUT V([Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Ne	w Bridge													
8	T1	1160	5.0	1221	5.0	0.647	4.5	LOS A	0.0	0.0	0.00	0.53	0.00	54.2
Approac	h	1160	5.0	1221	5.0	0.647	4.5	NA	0.0	0.0	0.00	0.53	0.00	54.2
West: No	ew Bridge													
2	T1	294	5.0	309	5.0	0.164	4.2	LOS A	0.0	0.0	0.00	0.53	0.00	54.7
Approac	h	294	5.0	309	5.0	0.164	4.2	NA	0.0	0.0	0.00	0.53	0.00	54.7
All Vehic	eles	1454	5.0	1531	5.0	0.647	4.4	NA	0.0	0.0	0.00	0.53	0.00	54.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

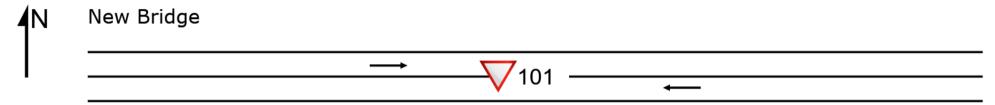
Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 7:54:45 am

▽ Site: 101 [New Bridge 2033 PM (Site Folder: 2033 Option B2)]

New Site

Site Category: (None) Give-Way (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

New Bridge

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Created: Tuesday, 23 April 2024 9:06:30 am

▽ Site: 101 [New Bridge 2033 PM (Site Folder: 2033 Option B2)]

New Site

Site Category: (None) Give-Way (Two-Way)

Vehicle	Moveme	ent Perform	ance											
Mov ID	Turn	INPUT V([Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Ne	w Bridge													
8	T1	762	5.0	802	5.0	0.425	4.3	LOS A	0.0	0.0	0.00	0.53	0.00	54.5
Approac	h	762	5.0	802	5.0	0.425	4.3	NA	0.0	0.0	0.00	0.53	0.00	54.5
West: No	ew Bridge													
2	T1	680	5.0	716	5.0	0.379	4.3	LOS A	0.0	0.0	0.00	0.53	0.00	54.5
Approac	h	680	5.0	716	5.0	0.379	4.3	NA	0.0	0.0	0.00	0.53	0.00	54.5
All Vehic	eles	1442	5.0	1518	5.0	0.425	4.3	NA	0.0	0.0	0.00	0.53	0.00	54.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

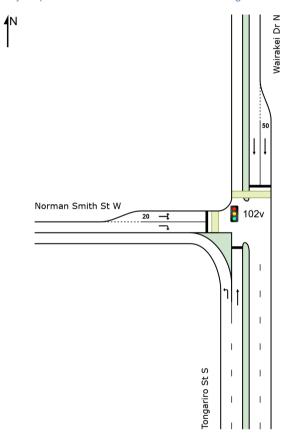
Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 7:54:46 am

Site: 102v [Norman / Wairakei 2053 AM Base Option A1 (Site Folder: 2053 Option A1)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Site: 102v [Norman / Wairakei 2053 AM Base Option A1 (Site Folder: 2053 Option A1)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Vehicle	Moveme	ent Perform	ance											
Mov ID	Turn	INPUT Vo [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: To	ongariro S	st S												
1	L2	438	31	461	7.1	0.261	4.5	LOS A	0.0	0.0	0.00	0.46	0.00	48.1
2	T1	350	26	368	7.4	0.566	33.9	LOS C	17.4	129.8	0.87	0.75	0.87	47.1
Approac	h	788	57	829	7.2	0.566	17.6	LOS B	17.4	129.8	0.38	0.59	0.38	47.2
North: W	/airakei Dr	· N												
8	T1	1362	31	1434	2.3	* 1.624	615.0	LOS F	162.3	1158.2	1.00	3.30	4.04	23.1
Approac	h	1362	31	1434	2.3	1.624	615.0	LOS F	162.3	1158.2	1.00	3.30	4.04	23.1
West: No	orman Sm	ith St W												
10	L2	24	1	25	4.2	* 1.593	595.1	LOS F	187.4	1334.3	1.00	2.23	3.96	23.9
12	R2	1607	31	1692	1.9	1.593	594.7	LOS F	200.5	1426.9	1.00	2.23	3.95	6.5
Approac	h	1631	32	1717	2.0	1.593	594.7	LOS F	200.5	1426.9	1.00	2.23	3.95	6.9
All Vehic	eles	3781	120	3980	3.2	1.624	481.7	LOS F	200.5	1426.9	0.87	2.27	3.24	18.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	estrian Move	ment Perform	ance								
Mov		Input Vol.	Dem.	Aver.	Level of	AVERAGE BAC	CK OF QUEUE	Prop.	Effective Travel Time	Travel Dist.	Aver.
ID	Crossing		Flow	Delay	Service	[Ped	Dist]	Que	Stop Rate		Speed

		ped/h	ped/h	sec		ped	m			sec	m	m/sec
North	n: Wairakei Dr	N										
P3	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	80.3	33.9	0.42
West	: Norman Smi	ith St W										
P4	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	78.8	31.9	0.40
All Pe	edestrians	0	105	54.3	LOS E	0.2	0.2	0.95	0.95	79.6	32.9	0.41

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 8:06:13 pm

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

Site: 102v [Norman / Wairakei 2053 AM Base Option A1 (Site Folder: 2053 Option A1)]

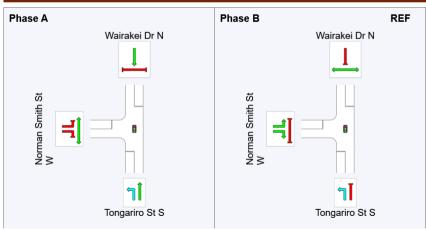
New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Opposed Turns Reference Phase: Phase B Input Phase Sequence: A, B Output Phase Sequence: A, B

Phase Timing Summary

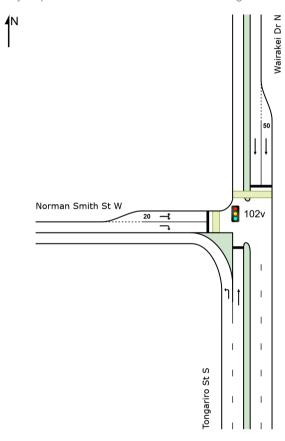
Phase	Α	В
Phase Change Time (sec)	72	0
Green Time (sec)	42	66
Phase Time (sec)	48	72
Phase Split	40%	60%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 8:06:13 pm
Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

Site: 102v [Norman / Wairakei 2053 PM Base Option A1 (Site Folder: 2053 Option A1)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Site: 102v [Norman / Wairakei 2053 PM Base Option A1 (Site Folder: 2053 Option A1)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Vehicle	Moveme	ent Perform	ance											
Mov ID	Turn	INPUT V0 [Total veh/h	DLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: To	ongariro S	st S												
1	L2	1680	26	1768	1.5	0.963	9.0	LOS A	0.0	0.0	0.00	0.41	0.00	43.2
2	T1	1039	16	1094	1.5	* 1.172	212.2	LOS F	148.0	1049.5	1.00	1.97	2.31	35.7
Approac	h	2719	42	2862	1.5	1.172	86.7	LOS F	148.0	1049.5	0.38	1.01	0.88	37.1
North: W	/airakei Dr	· N												
8	T1	468	16	493	3.4	0.267	19.5	LOS B	8.4	60.6	0.63	0.54	0.63	48.3
Approac	h	468	16	493	3.4	0.267	19.5	LOS B	8.4	60.6	0.63	0.54	0.63	48.3
West: No	orman Sm	ith St W												
10	L2	8	0	8	0.0	1.172	229.8	LOS F	65.1	467.7	1.00	1.52	2.44	35.1
12	R2	919	28	967	3.0	* 1.172	229.3	LOS F	69.8	501.3	1.00	1.52	2.44	13.8
Approac	h	927	28	976	3.0	1.172	229.3	LOS F	69.8	501.3	1.00	1.52	2.44	14.3
All Vehic	les	4114	86	4331	2.1	1.172	111.2	LOS F	148.0	1049.5	0.55	1.07	1.21	34.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	estrian Move	ment Perform	ance								
Mov		Input Vol.	Dem.	Aver.	Level of	AVERAGE BAC	CK OF QUEUE	Prop.	Effective Travel Time	Travel Dist.	Aver.
ID	Crossing		Flow	Delay	Service	[Ped	Dist]	Que	Stop Rate		Speed

		ped/h	ped/h	sec		ped	m			sec	m	m/sec
North	: Wairakei Dr	N										
P3	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	80.3	33.9	0.42
West	: Norman Sm	ith St W										
P4	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	78.8	31.9	0.40
All Pe	edestrians	0	105	54.3	LOS E	0.2	0.2	0.95	0.95	79.6	32.9	0.41

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 8:06:14 pm

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

Site: 102v [Norman / Wairakei 2053 PM Base Option A1 (Site Folder: 2053 Option A1)]

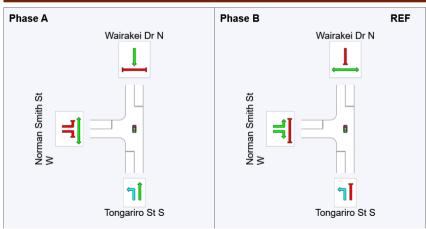
New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Opposed Turns Reference Phase: Phase B Input Phase Sequence: A, B Output Phase Sequence: A, B

Phase Timing Summary

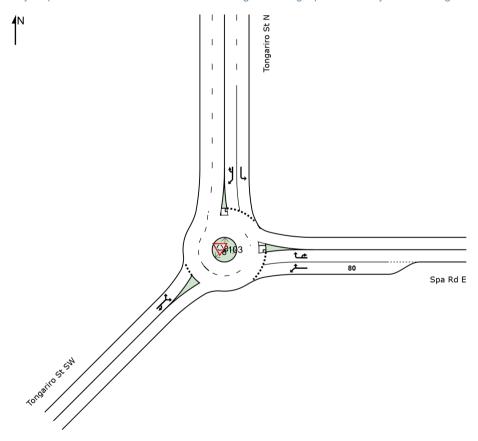
Phase	Α	В
Phase Change Time (sec)	56	0
Green Time (sec)	58	50
Phase Time (sec)	64	56
Phase Split	53%	47%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 8:06:14 pm
Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

▼ Site: 103 [Spa / Tongariro 2053 AM Base Option A1 (Site Folder: 2053 Option A1)]

New Site

Site Category: (None)

Roundabout

▼ Site: 103 [Spa / Tongariro 2053 AM Base Option A1 (Site Folder: 2053 Option A1)]

New Site

Site Category: (None)

Roundabout

Vehicle	Moveme	ent Perform	ance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Sp	a Rd E													
4a	L1	10	0	11	0.0	1.065	161.9	LOS F	33.7	249.4	1.00	2.39	4.13	14.4
6	R2	510	36	537	7.1	1.065	169.0	LOS F	33.7	249.4	1.00	2.30	3.99	15.8
6u	U	1	1	1	100.0	1.065	186.1	LOS F	26.0	193.8	1.00	2.18	3.81	15.1
Approac	ch	521	37	548	7.1	1.065	168.9	LOS F	33.7	249.4	1.00	2.30	3.99	15.8
North: To	ongariro S	t N												
7	L2	1728	38	1819	2.2	1.128	123.3	LOS F	220.5	1572.2	1.00	1.06	2.46	19.1
9a	R1	1080	23	1137	2.1	0.910	7.7	LOS A	27.4	194.9	0.99	0.46	0.99	43.5
9u	U	90	1	95	1.1	0.910	10.0	LOS A	27.4	194.9	0.99	0.46	0.99	45.0
Approac	ch	2898	62	3051	2.1	1.128	76.7	LOS F	220.5	1572.2	1.00	0.81	1.87	24.3
SouthW	est: Tonga	riro St SW												
30a	L1	365	20	384	5.5	0.646	6.1	LOS A	4.6	33.8	0.79	0.96	1.01	28.9
32a	R1	52	0	55	0.0	0.646	8.6	LOS A	4.6	33.8	0.79	0.96	1.01	28.9
32u	U	1	0	1	0.0	0.646	10.0	LOS A	4.6	33.8	0.79	0.96	1.01	29.4
Approac	ch	418	20	440	4.8	0.646	6.4	LOS A	4.6	33.8	0.79	0.96	1.01	28.9
All Vehic	cles	3837	119	4039	3.1	1.128	81.6	LOS F	220.5	1572.2	0.98	1.03	2.06	22.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

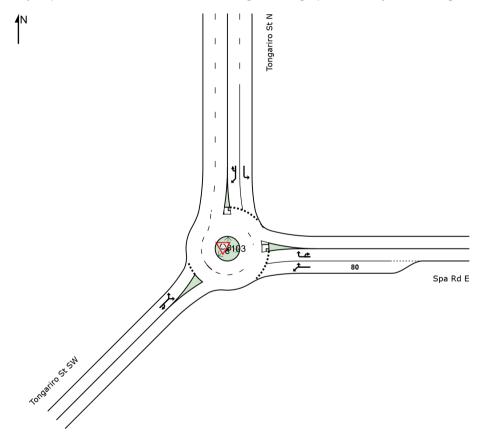
Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

▼ Site: 103 [Spa / Tongariro 2053 PM Base Option A1 (Site Folder: 2053 Option A1)]

New Site

Site Category: (None)

Roundabout

▼ Site: 103 [Spa / Tongariro 2053 PM Base Option A1 (Site Folder: 2053 Option A1)]

New Site

Site Category: (None)

Roundabout

Vehicle	Moveme	ent Perform	ance											
Mov ID	Turn	INPUT Vo [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Sp	oa Rd E													
4a	L1	2	0	2	0.0	0.946	36.5	LOS D	30.5	217.0	1.00	1.86	3.03	31.4
6	R2	1529	29	1609	1.9	0.946	42.1	LOS D	30.5	217.0	1.00	1.89	3.06	32.6
6u	U	1	1	1	100.0	0.946	54.4	LOS E	27.1	193.4	1.00	1.92	3.09	31.1
Approac	ch	1532	30	1613	2.0	0.946	42.1	LOS D	30.5	217.0	1.00	1.89	3.06	32.6
North: T	ongariro S	t N												
7	L2	817	31	860	3.8	0.498	4.5	LOS A	5.1	37.0	0.10	0.51	0.10	46.2
9a	R1	501	13	527	2.6	0.471	6.1	LOS A	4.6	32.6	0.10	0.59	0.10	45.2
9u	U	168	0	177	0.0	0.471	8.4	LOS A	4.6	32.6	0.10	0.59	0.10	46.5
Approac	ch	1486	44	1564	3.0	0.498	5.5	LOS A	5.1	37.0	0.10	0.54	0.10	45.9
SouthW	est: Tonga	riro St SW												
30a	L1	644	9	678	1.4	2.328	1203.9	LOS F	258.6	1831.7	1.00	13.11	24.09	2.6
32a	R1	12	0	13	0.0	2.328	1206.5	LOS F	258.6	1831.7	1.00	13.11	24.09	2.5
32u	U	1	0	1	0.0	2.328	1207.9	LOS F	258.6	1831.7	1.00	13.11	24.09	2.3
Approac	ch	657	9	692	1.4	2.328	1204.0	LOS F	258.6	1831.7	1.00	13.11	24.09	2.6
All Vehic	cles	3675	83	3868	2.3	2.328	235.0	LOS F	258.6	1831.7	0.64	3.35	5.62	11.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

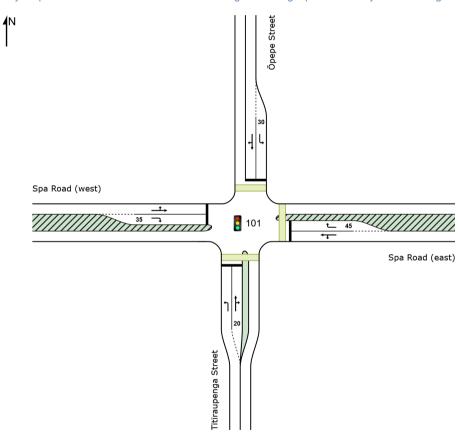
Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2053 AM Base Option A1 (Site Folder: 2053 Option

Ā1)]

New Site

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2053 AM Base Option A1 (Site Folder: 2053 Option

Ā1)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Vehicle	Movem	ent Perform	nance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: T	Γītīraupenç	ga Street												
1	L2	215	1	226	0.5	0.744	51.8	LOS D	12.3	86.6	0.94	0.85	1.03	30.6
2	T1	106	1	112	0.9	* 1.361	381.2	LOS F	21.1	149.0	1.00	1.76	3.33	13.1
3	R2	9	0	9	0.0	1.361	385.8	LOS F	21.1	149.0	1.00	1.76	3.33	28.1
Approac	ch	330	2	347	0.6	1.361	166.7	LOS F	21.1	149.0	0.96	1.17	1.83	19.7
East: Sp	oa Road (e	east)												
4	L2	95	2	100	2.1	1.355	382.5	LOS F	128.0	936.4	1.00	2.52	3.16	28.5
5	T1	588	34	619	5.8	1.355	376.3	LOS F	128.0	936.4	1.00	2.52	3.16	28.3
6	R2	192	2	202	1.0	1.012	112.8	LOS F	17.4	123.2	1.00	1.18	1.81	41.5
Approac	ch	875	38	921	4.3	1.355	319.1	LOS F	128.0	936.4	1.00	2.23	2.87	30.6
North: Ō	pepe Stre	et												
7	L2	53	2	56	3.8	0.285	38.1	LOS D	2.3	16.4	0.96	0.74	0.96	46.8
8	T1	72	1	76	1.4	0.194	42.3	LOS D	3.8	26.7	0.86	0.68	0.86	38.4
9	R2	2	0	2	0.0	0.194	46.9	LOS D	3.8	26.7	0.86	0.68	0.86	37.7
Approac	ch	127	3	134	2.4	0.285	40.6	LOS D	3.8	26.7	0.90	0.70	0.90	44.3
West: S	pa Road (west)												
10	L2	2	0	2	0.0	* 1.304	336.3	LOS F	145.2	1053.3	1.00	2.45	2.94	14.0
11	T1	818	35	861	4.3	1.304	329.9	LOS F	145.2	1053.3	1.00	2.45	2.94	29.9
12	R2	200	2	211	1.0	* 1.277	316.4	LOS F	33.0	232.7	1.00	1.70	2.98	10.0
Approac	ch	1020	37	1074	3.6	1.304	327.3	LOS F	145.2	1053.3	1.00	2.30	2.95	27.8
All Vehic	cles	2352	80	2476	3.4	1.361	286.2	LOS F	145.2	1053.3	0.99	2.03	2.65	29.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	strian Move	ment Performa	ance									
Mov ID	Crossing	Input Vol. ped/h	Dem. Flow ped/h	Aver. Delay sec	Level of Service	AVERAGE BACK [Ped ped	OF QUEUE Dist] m	Prop. Que	Effective Tr Stop Rate	avel Time sec	Travel Dist. m	Aver. Speed m/sec
South	ı: Tītīraupenga	Street										
P1	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	230.3	228.8	0.99
East:	Spa Road (ea	st)										
P2	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	221.0	216.8	0.98
North	: Ōpepe Stree	t										
P3	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	218.8	213.9	0.98
All Pe	edestrians	150	158	54.3	LOS E	0.2	0.2	0.95	0.95	223.4	219.8	0.98

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 12:45:09 pm

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2053 AM Base Option A1 (Site Folder: 2053 Option

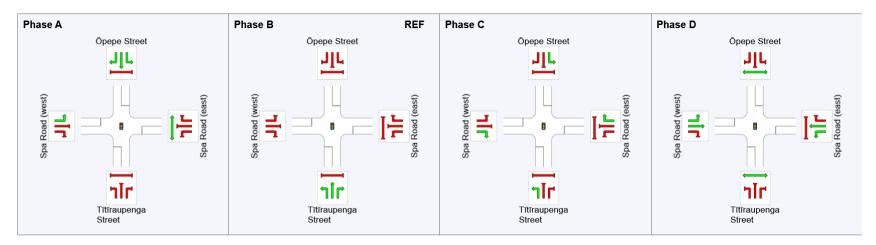
Ā1)]

New Site

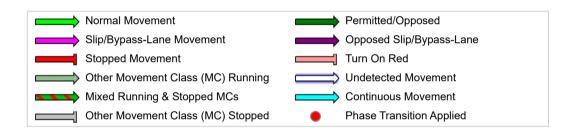
Site Category: (None)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program Phase Sequence: Leading Right Turn Reference Phase: Phase B


Input Phase Sequence: A, B, C, D Output Phase Sequence: A, B, C, D

Phase Timing Summary

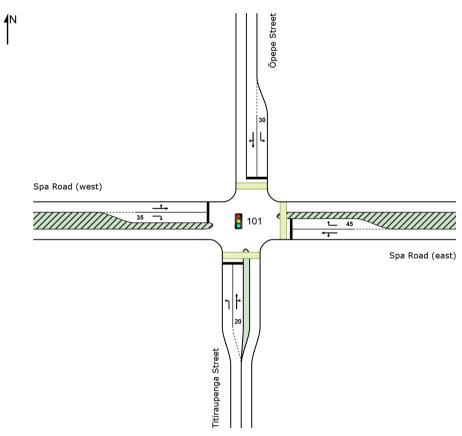

Phase	Α	В	С	D
Phase Change Time (sec)	89	0	12	33
Green Time (sec)	25	6	15	50
Phase Time (sec)	31	12	21	56
Phase Split	26%	10%	18%	47%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 12:45:09 pm
Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2053 PM Base Option A1 (Site Folder: 2053 Option

Ā1)]

New Site

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2053 PM Base Option A1 (Site Folder: 2053 Option

Ā1)]

New Site

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Vehicle	e Movemo	ent Perform	nance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: 7	Γītīraupeng	ga Street												
1	L2	144	0	152	0.0	0.392	44.2	LOS D	7.3	50.9	0.86	0.78	0.86	32.4
2	T1	47	1	49	2.1	* 0.639	65.4	LOS E	3.8	27.0	1.00	0.80	1.11	34.0
3	R2	11	0	12	0.0	0.639	70.0	LOS E	3.8	27.0	1.00	0.80	1.11	44.2
Approac	ch	202	1	213	0.5	0.639	50.6	LOS D	7.3	50.9	0.90	0.78	0.93	35.0
East: Sp	pa Road (e	east)												
4	L2	75	1	79	1.3	1.497	504.8	LOS F	190.1	1368.4	1.00	2.94	3.64	25.0
5	T1	807	28	849	3.5	* 1.497	498.6	LOS F	190.1	1368.4	1.00	2.94	3.64	24.8
6	R2	28	1	29	3.6	0.108	52.5	LOS D	1.5	10.9	0.90	0.71	0.90	45.6
Approac	ch	910	30	958	3.3	1.497	485.4	LOS F	190.1	1368.4	1.00	2.87	3.56	25.2
North: Ō	Dpepe Stre	et												
7	L2	54	1	57	1.9	* 0.233	35.6	LOS D	2.2	15.7	0.93	0.74	0.93	47.0
8	T1	112	1	118	0.9	0.300	43.4	LOS D	6.0	42.5	0.89	0.71	0.89	38.2
9	R2	3	0	3	0.0	0.300	48.0	LOS D	6.0	42.5	0.89	0.71	0.89	37.4
Approac	ch	169	2	178	1.2	0.300	41.0	LOS D	6.0	42.5	0.90	0.72	0.90	43.5
West: S	pa Road (west)												
10	L2	12	0	13	0.0	1.052	130.1	LOS F	72.9	529.2	1.00	1.51	1.76	25.6
11	T1	666	29	701	4.4	1.052	123.7	LOS F	72.9	529.2	1.00	1.51	1.76	40.0
12	R2	70	0	74	0.0	0.265	54.0	LOS D	3.9	27.2	0.93	0.76	0.93	30.0
Approac	ch	748	29	787	3.9	1.052	117.2	LOS F	72.9	529.2	0.99	1.44	1.68	39.7
All Vehic	cles	2029	62	2136	3.1	1.497	269.4	LOS F	190.1	1368.4	0.98	1.95	2.38	30.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	strian Move	ment Perform	ance									
Mov ID	Crossing	Input Vol. ped/h	Dem. Flow ped/h	Aver. Delay sec	Level of Service	AVERAGE BAC [Ped ped	K OF QUEUE Dist] m	Prop. Que	Effective T Stop Rate	ravel Time sec	Travel Dist. m	Aver. Speed m/sec
South	ı: Tītīraupenga		, , , , , , , , , , , , , , , , , , , ,									
P1	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	230.3	228.8	0.99
East:	Spa Road (ea	st)										
P2	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	221.0	216.8	0.98
North	: Ōpepe Street	t										
P3	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	218.8	213.9	0.98
All Pe	edestrians	150	158	54.3	LOS E	0.2	0.2	0.95	0.95	223.4	219.8	0.98

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 12:45:07 pm

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2053 PM Base Option A1 (Site Folder: 2053 Option

Ā1)]

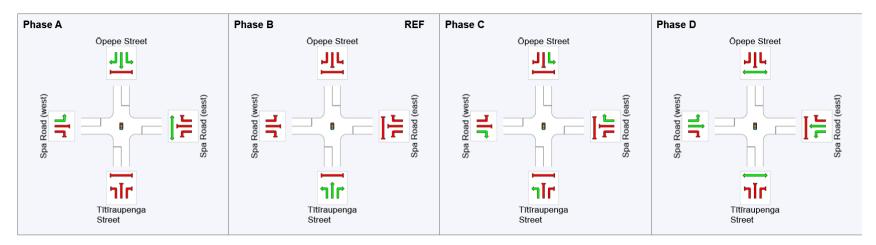
New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program Phase Sequence: Leading Right Turn Reference Phase: Phase B


Input Phase Sequence: A, B, C, D
Output Phase Sequence: A, B, C, D

Phase Timing Summary

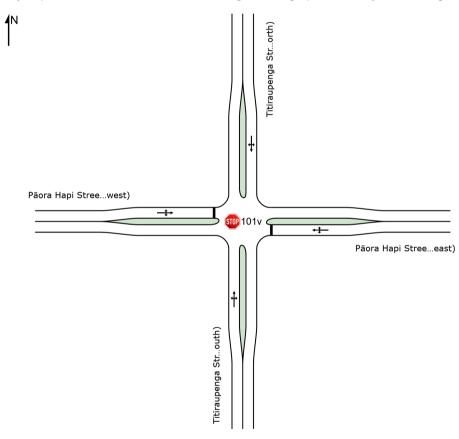
Phase	Α	В	С	D
Phase Change Time (sec)	89	0	12	36
Green Time (sec)	25	6	18	47
Phase Time (sec)	31	12	24	53
Phase Split	26%	10%	20%	44%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 12:45:07 pm Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

Olice 404 - IDE

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2053 AM Base Option A1 (Site Folder: 2053 Option

A1)]

New Site Site Category: (None) Stop (Two-Way)

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2053 AM Base Option A1 (Site Folder: 2053 Option A1)]

New Site

Site Category: (None) Stop (Two-Way)

Vehicle	Movem	ent Perform	nance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	Γītīraupenç	ga Street (sou	uth)											
1	L2	143	2	151	1.4	0.329	4.7	LOS A	0.2	1.3	0.04	0.14	0.04	40.1
2	T1	439	2	462	0.5	0.329	0.1	LOS A	0.2	1.3	0.04	0.14	0.04	48.5
3	R2	11	0	12	0.0	0.329	6.5	LOS A	0.2	1.3	0.04	0.14	0.04	46.9
Approac	ch	593	4	624	0.7	0.329	1.3	NA	0.2	1.3	0.04	0.14	0.04	46.2
East: Pa	āora Hapi 🤅	Street (east)												
4	L2	23	0	24	0.0	0.134	9.0	LOS A	0.4	3.1	0.60	0.96	0.60	37.9
5	T1	27	0	28	0.0	0.134	17.9	LOS C	0.4	3.1	0.60	0.96	0.60	29.5
6	R2	5	0	5	0.0	0.134	17.0	LOS C	0.4	3.1	0.60	0.96	0.60	35.3
Approac	ch	55	0	58	0.0	0.134	14.1	LOS B	0.4	3.1	0.60	0.96	0.60	33.6
North: T	ītīraupeng	a Street (nor	th)											
7	L2	3	0	3	0.0	0.213	7.8	LOS A	0.4	2.7	0.13	0.05	0.13	47.6
8	T1	335	4	353	1.2	0.213	0.4	LOS A	0.4	2.7	0.13	0.05	0.13	48.9
9	R2	25	0	26	0.0	0.213	8.0	LOS A	0.4	2.7	0.13	0.05	0.13	37.9
Approac	ch	363	4	382	1.1	0.213	1.0	NA	0.4	2.7	0.13	0.05	0.13	48.1
West: P	āora Hapi	Street (west)												
10	L2	22	0	23	0.0	1.014	72.4	LOS F	16.7	118.1	1.00	3.15	5.55	13.3
11	T1	22	0	23	0.0	1.014	81.5	LOS F	16.7	118.1	1.00	3.15	5.55	12.7
12	R2	228	3	240	1.3	1.014	86.1	LOS F	16.7	118.1	1.00	3.15	5.55	15.3
Approac	ch	272	3	286	1.1	1.014	84.6	LOS F	16.7	118.1	1.00	3.15	5.55	15.0
All Vehi	cles	1283	11	1351	0.9	1.014	19.4	NA	16.7	118.1	0.29	0.79	1.25	32.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

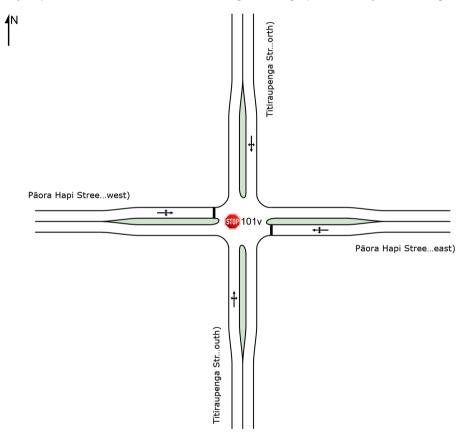
Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 7:55:07 am


Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

OITE LATOU

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2053 PM Base Option A1 (Site Folder: 2053 Option

A1)]

New Site Site Category: (None) Stop (Two-Way)

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2053 PM Base Option A1 (Site Folder: 2053 Option A1)]

New Site

Site Category: (None) Stop (Two-Way)

Vehicle	Move _m	ent Perform	nance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: 7	Γītīraupenç	ga Street (sou	uth)											
1	L2	103	1	108	1.0	0.179	4.7	LOS A	0.1	1.0	0.05	0.18	0.05	39.8
2	T1	206	1	217	0.5	0.179	0.1	LOS A	0.1	1.0	0.05	0.18	0.05	48.0
3	R2	10	0	11	0.0	0.179	6.0	LOS A	0.1	1.0	0.05	0.18	0.05	46.4
Approac	ch	319	2	336	0.6	0.179	1.8	NA	0.1	1.0	0.05	0.18	0.05	45.0
East: Pa	āora Hapi :	Street (east)												
4	L2	13	0	14	0.0	0.084	8.9	LOS A	0.3	2.0	0.52	0.98	0.52	39.8
5	T1	26	0	27	0.0	0.084	12.2	LOS B	0.3	2.0	0.52	0.98	0.52	31.0
6	R2	8	0	8	0.0	0.084	12.4	LOS B	0.3	2.0	0.52	0.98	0.52	37.4
Approac	ch	47	0	49	0.0	0.084	11.3	LOS B	0.3	2.0	0.52	0.98	0.52	34.5
North: T	ītīraupeng	a Street (nor	th)											
7	L2	7	0	7	0.0	0.196	5.8	LOS A	0.3	2.1	0.10	0.06	0.10	47.8
8	T1	312	1	328	0.3	0.196	0.2	LOS A	0.3	2.1	0.10	0.06	0.10	49.0
9	R2	28	0	29	0.0	0.196	5.9	LOS A	0.3	2.1	0.10	0.06	0.10	38.0
Approac	ch	347	1	365	0.3	0.196	8.0	NA	0.3	2.1	0.10	0.06	0.10	48.1
West: P	āora Hapi	Street (west)												
10	L2	26	0	27	0.0	0.754	13.5	LOS B	6.2	43.5	0.80	1.55	1.86	26.4
11	T1	22	0	23	0.0	0.754	19.0	LOS C	6.2	43.5	0.80	1.55	1.86	25.5
12	R2	284	2	299	0.7	0.754	21.1	LOS C	6.2	43.5	0.80	1.55	1.86	28.7
Approac	ch	332	2	349	0.6	0.754	20.4	LOS C	6.2	43.5	0.80	1.55	1.86	28.3
All Vehic	cles	1045	5	1100	0.5	0.754	7.8	NA	6.2	43.5	0.32	0.61	0.66	38.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

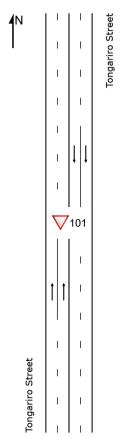
Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Thursday, 28 March 2024 7:55:08 am

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

▽ Site: 101 [TCG Bridge 2053 AM (Site Folder: 2053 Option A1)]

New Site

Site Category: (None) Give-Way (Two-Way)

▽ Site: 101 [TCG Bridge 2053 AM (Site Folder: 2053 Option A1)]

New Site

Site Category: (None) Give-Way (Two-Way)

Vehicle	Movem	ent Perform	ance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: T	ongariro S	Street												
2	T1	787	5.0	828	5.0	0.219	4.2	LOS A	0.0	0.0	0.00	0.53	0.00	54.6
Approac	ch	787	5.0	828	5.0	0.219	4.2	NA	0.0	0.0	0.00	0.53	0.00	54.6
North: T	ongariro S	Street												
8	T1	2968	5.0	3124	5.0	0.827	5.0	LOS A	0.0	0.0	0.00	0.52	0.00	53.4
Approac	ch	2968	5.0	3124	5.0	0.827	5.0	NA	0.0	0.0	0.00	0.52	0.00	53.4
All Vehic	cles	3755	5.0	3953	5.0	0.827	4.9	NA	0.0	0.0	0.00	0.52	0.00	53.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

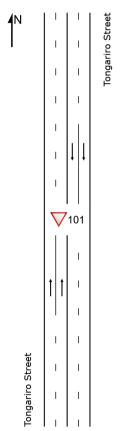
Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Tuesday, 16 April 2024 7:51:55 am

Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

V Site: 101 [TCG Bridge 2053 PM (Site Folder: 2053 Option A1)]

New Site

Site Category: (None) Give-Way (Two-Way)

V Site: 101 [TCG Bridge 2053 PM (Site Folder: 2053 Option A1)]

New Site

Site Category: (None) Give-Way (Two-Way)

Vehicle	Moveme	ent Perform	ance											
Mov ID	Turn	INPUT V([Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: T	ongariro S	Street												
2	T1	2718	5.0	2861	5.0	0.757	4.7	LOS A	0.0	0.0	0.00	0.52	0.00	53.8
Approac	ch	2718	5.0	2861	5.0	0.757	4.7	NA	0.0	0.0	0.00	0.52	0.00	53.8
North: T	ongariro S	treet												
8	T1	1387	5.0	1460	5.0	0.387	4.3	LOS A	0.0	0.0	0.00	0.53	0.00	54.5
Approac	ch	1387	5.0	1460	5.0	0.387	4.3	NA	0.0	0.0	0.00	0.53	0.00	54.5
All Vehic	cles	4105	5.0	4321	5.0	0.757	4.6	NA	0.0	0.0	0.00	0.52	0.00	54.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

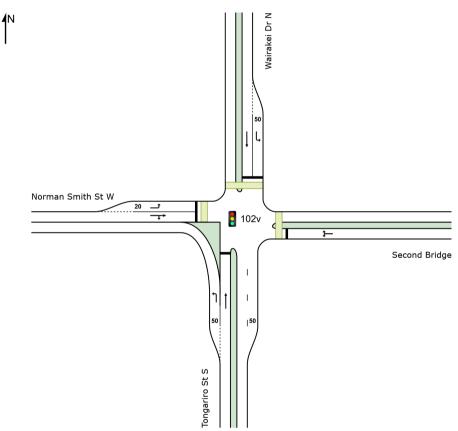
Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Tuesday, 16 April 2024 7:52:20 am


Project: C:\Users\NZIW30960\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - Documents\General\04 SIDRA\Taupo - Base models and Options - IWv3 - Copy.sip9

Site: 102v [Norman / Wairakei 2053 AM Base Option B1 (Site Folder: 2053 Option B1)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Site: 102v [Norman / Wairakei 2053 AM Base Option B1 (Site Folder: 2053 Option B1)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Vehicle	e Movem	ent Perform	ance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	Tongariro S	St S												
1	L2	479	31	504	6.5	0.284	4.5	LOS A	0.0	0.0	0.00	0.46	0.00	48.1
2	T1	280	15	295	5.4	0.916	62.9	LOS E	19.2	140.8	0.90	1.06	1.30	44.8
Approa	ch	759	46	799	6.1	0.916	26.1	LOS C	19.2	140.8	0.33	0.68	0.48	45.5
East: S	econd Brid	lge												
4	L2	1	0	1	0.0	* 0.477	56.3	LOS E	6.7	50.9	0.96	0.79	0.96	28.3
6	R2	115	11	121	9.6	0.477	56.3	LOS E	6.7	50.9	0.96	0.79	0.96	45.2
Approa	ch	116	11	122	9.5	0.477	56.3	LOS E	6.7	50.9	0.96	0.79	0.96	45.2
North: \	Wairakei D	r N												
7	L2	442	15	465	3.4	1.873	837.9	LOS F	119.2	858.5	1.00	2.59	4.65	19.3
8	T1	981	20	1033	2.0	* 2.363	1273.7	LOS F	311.7	2220.1	1.00	4.42	5.42	14.7
Approa	ch	1423	35	1498	2.5	2.363	1138.3	LOS F	311.7	2220.1	1.00	3.85	5.18	15.9
West: N	lorman Sn	nith St W												
10	L2	22	1	23	4.5	0.044	37.0	LOS D	1.0	7.0	0.75	0.68	0.75	46.8
11	T1	961	20	1012	2.1	* 2.349	1262.8	LOS F	552.9	3927.3	1.00	3.78	5.39	3.2
12	R2	774	10	815	1.3	2.349	1267.5	LOS F	552.9	3927.3	1.00	3.78	5.39	3.3
Approa	ch	1757	31	1849	1.8	2.349	1249.5	LOS F	552.9	3927.3	1.00	3.74	5.33	3.5
All Vehi	cles	4055	123	4268	3.0	2.363	947.3	LOS F	552.9	3927.3	0.87	3.12	4.25	11.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	strian Movem	nent Perform	ance									
Mov ID	Crossing	Input Vol.	Dem. Flow ped/h	Aver. Delay sec	Level of Service	AVERAGE BAC [Ped ped	K OF QUEUE Dist] m	Prop. Que	Effective Ti Stop Rate	ravel Time sec	Travel Dist. m	Aver. Speed m/sec
East:	Second Bridge											
P2	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	216.3	210.6	0.97
North	: Wairakei Dr N											
P3	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	80.3	33.9	0.42
West	Norman Smith	St W										
P4	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	78.8	31.9	0.40
All Pe	destrians	50	158	54.3	LOS E	0.2	0.2	0.95	0.95	125.1	92.1	0.74

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Tuesday, 23 April 2024 9:56:32 am
Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

Site: 102v [Norman / Wairakei 2053 AM Base Option B1 (Site Folder: 2053 Option B1)]

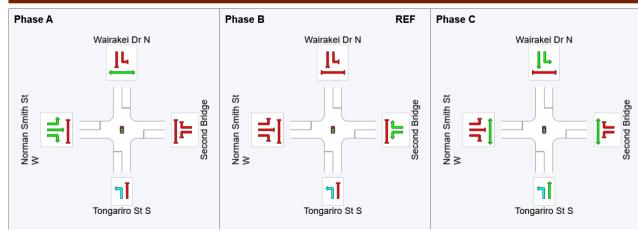
New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Opposed Turns Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Summary

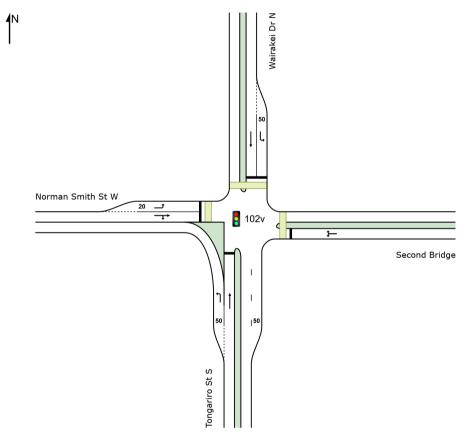
Phase	Α	В	С
Phase Change Time (sec)	64	0	24
Green Time (sec)	50	18	34
Phase Time (sec)	56	24	40
Phase Split	47%	20%	33%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Tuesday, 23 April 2024 9:56:32 am
Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

Site: 102v [Norman / Wairakei 2053 PM Base Option B1 (Site Folder: 2053 Option B1)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Site: 102v [Norman / Wairakei 2053 PM Base Option B1 (Site Folder: 2053 Option B1)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Vehicle	Movem	ent Perform	ance											
Mov ID	Turn	INPUT Vo [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: 7	Tongariro S	St S												
1	L2	1612	24	1697	1.5	0.923	7.0	LOS A	0.0	0.0	0.00	0.44	0.00	45.3
2	T1	173	1	182	0.6	0.803	61.4	LOS E	11.3	79.4	1.00	0.94	1.19	44.9
Approac	ch	1785	25	1879	1.4	0.923	12.2	LOS B	11.3	79.4	0.10	0.49	0.12	45.1
East: Se	econd Brid	lge												
4	L2	1	0	1	0.0	1.626	617.7	LOS F	264.8	1879.5	1.00	2.28	4.01	5.3
6	R2	1109	18	1167	1.6	* 1.626	617.6	LOS F	264.8	1879.5	1.00	2.28	4.01	23.0
Approac	ch	1110	18	1168	1.6	1.626	617.6	LOS F	264.8	1879.5	1.00	2.28	4.01	23.0
North: V	Vairakei D	r N												
7	L2	135	8	142	5.9	3.190	2004.1	LOS F	49.4	363.5	1.00	2.46	6.27	10.4
8	T1	335	7	353	2.1	* 1.601	590.4	LOS F	77.1	549.4	1.00	2.72	4.01	23.5
Approac	ch	470	15	495	3.2	3.190	996.5	LOS F	77.1	549.4	1.00	2.64	4.66	17.3
West: N	lorman Sm	nith St W												
10	L2	6	0	6	0.0	0.016	43.8	LOS D	0.3	2.0	0.81	0.65	0.81	46.3
11	T1	413	20	435	4.8	* 1.648	632.8	LOS F	238.8	1711.8	1.00	2.76	4.08	6.0
12	R2	577	8	607	1.4	1.648	637.5	LOS F	238.8	1711.8	1.00	2.76	4.08	6.1
Approac	ch	996	28	1048	2.8	1.648	632.0	LOS F	238.8	1711.8	1.00	2.75	4.06	6.2
All Vehic	cles	4361	86	4591	2.0	3.190	413.9	LOS F	264.8	1879.5	0.63	1.69	2.50	19.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	strian Movem	nent Perform	ance									
Mov ID	Crossing	Input Vol.	Dem. Flow ped/h	Aver. Delay sec	Level of Service	AVERAGE BAC [Ped ped	K OF QUEUE Dist] m	Prop. Que	Effective Ti Stop Rate	ravel Time sec	Travel Dist. m	Aver. Speed m/sec
East:	Second Bridge											
P2	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	216.3	210.6	0.97
North	: Wairakei Dr N											
P3	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	80.3	33.9	0.42
West	Norman Smith	St W										
P4	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	78.8	31.9	0.40
All Pe	destrians	50	158	54.3	LOS E	0.2	0.2	0.95	0.95	125.1	92.1	0.74

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Tuesday, 23 April 2024 9:56:32 am
Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

Site: 102v [Norman / Wairakei 2053 PM Base Option B1 (Site Folder: 2053 Option B1)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Opposed Turns Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Summary

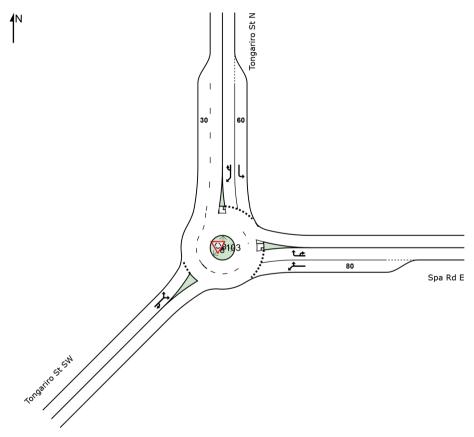
Phase	Α	В	С
Phase Change Time (sec)	73	0	53
Green Time (sec)	41	47	14
Phase Time (sec)	47	53	20
Phase Split	39%	44%	17%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Tuesday, 23 April 2024 9:56:32 am
Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

▼ Site: 103 [Spa / Tongariro 2053 AM Base Option B1 (Site Folder: 2053 Option B1)]

New Site

Site Category: (None)

Roundabout

▼ Site: 103 [Spa / Tongariro 2053 AM Base Option B1 (Site Folder: 2053 Option B1)]

New Site

Site Category: (None)

Roundabout

Vehicle	Moveme	ent Perform	ance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Sp	a Rd E													
4a	L1	26	0	27	0.0	0.186	10.9	LOS B	1.1	7.9	0.82	0.89	0.82	41.7
6	R2	468	25	493	5.3	0.607	17.5	LOS B	6.6	48.4	0.97	1.08	1.26	41.1
6u	U	1	1	1	100.0	0.607	24.6	LOS C	6.6	48.4	0.98	1.11	1.32	39.8
Approac	ch	495	26	521	5.3	0.607	17.2	LOS B	6.6	48.4	0.96	1.07	1.24	41.1
North: To	ongariro S	t N												
7	L2	900	10	947	1.1	0.619	5.0	LOS A	7.2	50.9	0.45	0.51	0.45	45.6
9a	R1	719	19	757	2.6	0.633	6.9	LOS A	7.4	53.1	0.49	0.56	0.49	44.5
9u	U	88	1	93	1.1	0.633	9.3	LOS A	7.4	53.1	0.49	0.56	0.49	45.9
Approac	ch	1707	30	1797	1.8	0.633	6.0	LOS A	7.4	53.1	0.47	0.53	0.47	45.2
SouthW	est: Tonga	riro St SW												
30a	L1	367	20	386	5.4	0.676	7.8	LOS A	5.8	42.3	0.85	1.05	1.11	28.5
32a	R1	72	0	76	0.0	0.676	10.1	LOS B	5.8	42.3	0.85	1.05	1.11	28.5
32u	U	1	0	1	0.0	0.676	11.4	LOS B	5.8	42.3	0.85	1.05	1.11	29.0
Approac	h	440	20	463	4.5	0.676	8.2	LOS A	5.8	42.3	0.85	1.05	1.11	28.5
All Vehic	cles	2642	76	2781	2.9	0.676	8.5	LOSA	7.4	53.1	0.62	0.72	0.72	40.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

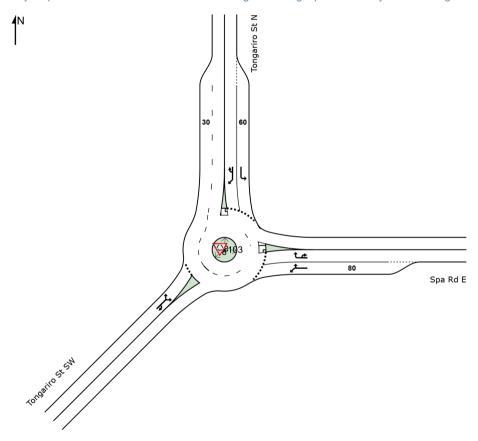
Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

▼ Site: 103 [Spa / Tongariro 2053 PM Base Option B1 (Site Folder: 2053 Option B1)]

New Site

Site Category: (None)

Roundabout

▼ Site: 103 [Spa / Tongariro 2053 PM Base Option B1 (Site Folder: 2053 Option B1)]

New Site

Site Category: (None)

Roundabout

Vehicle	Moveme	ent Perform	ance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Sp	a Rd E													
4a	L1	18	0	19	0.0	0.299	7.6	LOS A	1.7	11.7	0.66	0.81	0.66	43.1
6	R2	1207	16	1271	1.3	0.979	35.6	LOS D	39.5	279.8	0.95	1.61	2.60	34.7
6u	U	1	1	1	100.0	0.979	46.9	LOS D	39.5	279.8	1.00	1.74	2.93	32.5
Approac	h	1226	17	1291	1.4	0.979	35.2	LOS D	39.5	279.8	0.95	1.60	2.58	34.7
North: T	ongariro S	t N												
7	L2	477	4	502	8.0	0.302	4.5	LOS A	2.5	17.3	0.14	0.50	0.14	46.2
9a	R1	367	11	386	3.0	0.331	6.2	LOS A	2.7	19.4	0.16	0.57	0.16	45.1
9u	U	93	0	98	0.0	0.331	8.8	LOS A	2.7	19.4	0.16	0.57	0.16	46.5
Approac	ch	937	15	986	1.6	0.331	5.6	LOS A	2.7	19.4	0.15	0.54	0.15	45.8
SouthW	est: Tonga	riro St SW												
30a	L1	446	8	469	1.8	1.535	504.3	LOS F	120.6	856.3	1.00	8.38	13.91	5.6
32a	R1	26	0	27	0.0	1.535	504.8	LOS F	120.6	856.3	1.00	8.38	13.91	5.4
32u	U	1	0	1	0.0	1.535	506.1	LOS F	120.6	856.3	1.00	8.38	13.91	4.9
Approac	ch	473	8	498	1.7	1.535	504.3	LOS F	120.6	856.3	1.00	8.38	13.91	5.6
All Vehic	cles	2636	40	2775	1.5	1.535	108.9	LOS F	120.6	856.3	0.67	2.44	3.75	19.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

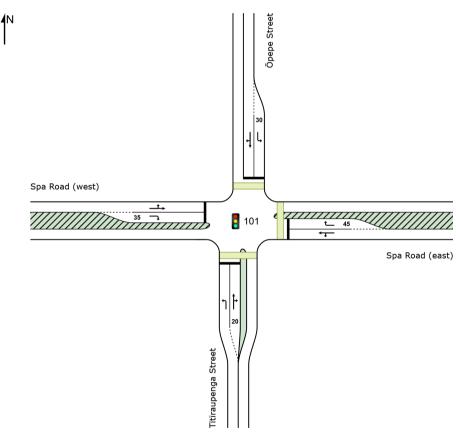
Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2053 AM Base Option B1 (Site Folder: 2053 Option

B1)]

New Site

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2053 AM Base Option B1 (Site Folder: 2053 Option

B1)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Vehicle	Movem	ent Perform	nance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: T	Tītīraupeng	ga Street												
1	L2	168	4	177	2.4	0.487	40.4	LOS D	8.1	57.9	0.83	0.77	0.83	33.4
2	T1	114	1	120	0.9	* 1.441	450.8	LOS F	24.7	174.4	1.00	1.88	3.60	10.1
3	R2	9	0	9	0.0	1.441	455.4	LOS F	24.7	174.4	1.00	1.88	3.60	26.1
Approac	ch	291	5	306	1.7	1.441	214.0	LOS F	24.7	174.4	0.90	1.24	2.00	16.6
East: Sp	oa Road (e	east)												
4	L2	13	0	14	0.0	* 0.893	63.1	LOS E	23.3	172.2	0.96	1.04	1.23	45.0
5	T1	336	22	354	6.5	0.893	56.9	LOS E	23.3	172.2	0.96	1.04	1.23	44.9
6	R2	174	10	183	5.7	0.536	52.4	LOS D	9.8	72.1	0.95	0.81	0.95	45.5
Approac	ch	523	32	551	6.1	0.893	55.6	LOS E	23.3	172.2	0.95	0.96	1.14	45.1
North: Ō	pepe Stre	et												
7	L2	601	27	633	4.5	* 1.963	906.3	LOS F	156.2	1135.5	1.00	2.67	4.81	18.2
8	T1	544	8	573	1.5	* 2.076	1017.2	LOS F	170.6	1208.6	1.00	3.70	5.02	5.1
9	R2	39	0	41	0.0	2.076	1021.7	LOS F	170.6	1208.6	1.00	3.70	5.02	4.8
Approac	ch	1184	35	1246	3.0	2.076	961.1	LOS F	170.6	1208.6	1.00	3.18	4.91	12.6
West: S	pa Road (west)												
10	L2	1	0	1	0.0	0.514	41.9	LOS D	13.1	94.5	0.86	0.73	0.86	37.9
11	T1	263	10	277	3.8	0.514	35.5	LOS D	13.1	94.5	0.86	0.73	0.86	46.7
12	R2	53	0	56	0.0	0.157	48.3	LOS D	2.7	19.2	0.87	0.74	0.87	31.3
Approac	ch	317	10	334	3.2	0.514	37.6	LOS D	13.1	94.5	0.86	0.73	0.86	46.0
All Vehic	cles	2315	82	2437	3.5	2.076	536.1	LOS F	170.6	1208.6	0.96	2.10	3.14	19.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	strian Move	ment Performa	ance									
Mov ID	Crossing	Input Vol. ped/h	Dem. Flow ped/h	Aver. Delay sec	Level of Service	AVERAGE BACK [Ped ped	OF QUEUE Dist] m	Prop. Que	Effective Tr Stop Rate	avel Time sec	Travel Dist. m	Aver. Speed m/sec
South	ı: Tītīraupenga	Street										
P1	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	230.3	228.8	0.99
East:	Spa Road (ea	st)										
P2	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	221.0	216.8	0.98
North	: Ōpepe Stree	t										
P3	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	218.8	213.9	0.98
All Pe	edestrians	150	158	54.3	LOS E	0.2	0.2	0.95	0.95	223.4	219.8	0.98

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 8:44:27 pm

Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2053 AM Base Option B1 (Site Folder: 2053 Option

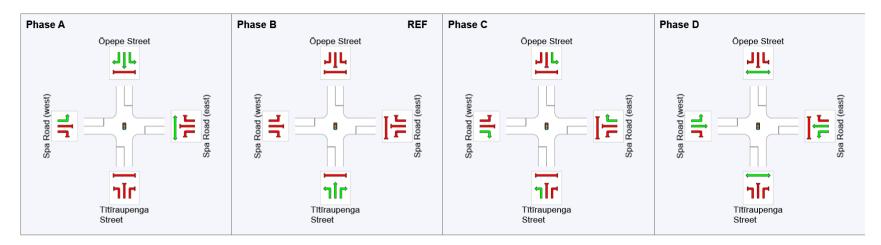
B1)]

New Site

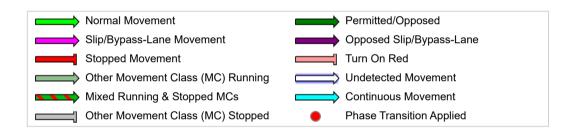
Site Category: (None)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program Phase Sequence: Leading Right Turn Reference Phase: Phase B


Input Phase Sequence: A, B, C, D
Output Phase Sequence: A, B, C, D

Phase Timing Summary

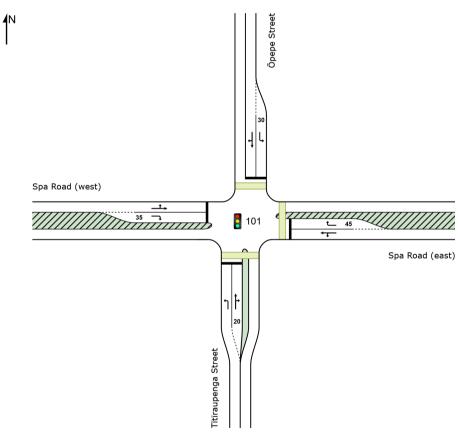

Phase	Α	В	С	D
Phase Change Time (sec)	84	0	12	41
Green Time (sec)	30	6	23	37
Phase Time (sec)	36	12	29	43
Phase Split	30%	10%	24%	36%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 8:44:27 pm
Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2053 PM Base Option B1 (Site Folder: 2053 Option

B1)]

New Site

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2053 PM Base Option B1 (Site Folder: 2053 Option

B1)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Vehicle	e Movem	ent Perform	nance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: 7	Tītīraupeng	ga Street												
1	L2	660	5	695	8.0	1.494	503.0	LOS F	142.3	1002.2	1.00	2.15	3.66	6.9
2	T1	264	4	278	1.5	* 2.080	1017.9	LOS F	79.6	563.9	1.00	2.90	5.06	5.1
3	R2	9	0	9	0.0	2.080	1022.4	LOS F	79.6	563.9	1.00	2.90	5.06	16.5
Approac	ch	933	9	982	1.0	2.080	653.7	LOS F	142.3	1002.2	1.00	2.37	4.07	6.3
East: Sp	pa Road (e	east)												
4	L2	6	0	6	0.0	* 0.281	42.2	LOS D	6.5	48.8	0.82	0.68	0.82	46.7
5	T1	130	11	137	8.5	0.281	36.0	LOS D	6.5	48.8	0.82	0.68	0.82	46.7
6	R2	462	15	486	3.2	* 2.016	962.8	LOS F	131.7	947.4	1.00	2.61	4.91	17.6
Approac	ch	598	26	629	4.3	2.016	752.1	LOS F	131.7	947.4	0.96	2.17	3.98	20.4
North: Ō	Dpepe Stre	et												
7	L2	267	22	281	8.2	* 1.346	354.1	LOS F	42.0	314.7	1.00	1.80	3.20	29.0
8	T1	191	4	201	2.1	0.845	55.6	LOS E	12.1	86.5	0.94	0.95	1.22	34.1
9	R2	3	0	3	0.0	0.845	60.2	LOS E	12.1	86.5	0.94	0.95	1.22	33.1
Approac	ch	461	26	485	5.6	1.346	228.5	LOS F	42.0	314.7	0.97	1.44	2.37	29.6
West: S	pa Road (west)												
10	L2	1	0	1	0.0	0.262	39.1	LOS D	6.7	47.5	0.79	0.65	0.79	38.6
11	T1	145	3	153	2.1	0.262	32.7	LOS C	6.7	47.5	0.79	0.65	0.79	47.0
12	R2	423	1	445	0.2	1.906	864.6	LOS F	115.4	809.2	1.00	2.52	4.71	4.2
Approac	ch	569	4	599	0.7	1.906	651.2	LOS F	115.4	809.2	0.95	2.04	3.70	11.0
All Vehic	cles	2561	65	2696	2.5	2.080	599.6	LOS F	142.3	1002.2	0.97	2.08	3.66	15.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	strian Movem	nent Perform	ance									
Mov ID	Crossing	Input Vol. ped/h	Dem. Flow ped/h	Aver. Delay sec	Level of Service	AVERAGE BAC [Ped ped	K OF QUEUE Dist] m	Prop. Que	Effective T Stop Rate	ravel Time sec	Travel Dist. m	Aver. Speed m/sec
South	: Tītīraupenga S	Street										
P1	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	230.3	228.8	0.99
East:	Spa Road (east	t)										
P2	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	221.0	216.8	0.98
North	: Ōpepe Street											
P3	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	218.8	213.9	0.98
All Pe	destrians	150	158	54.3	LOS E	0.2	0.2	0.95	0.95	223.4	219.8	0.98

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 8:44:28 pm

Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2053 PM Base Option B1 (Site Folder: 2053 Option

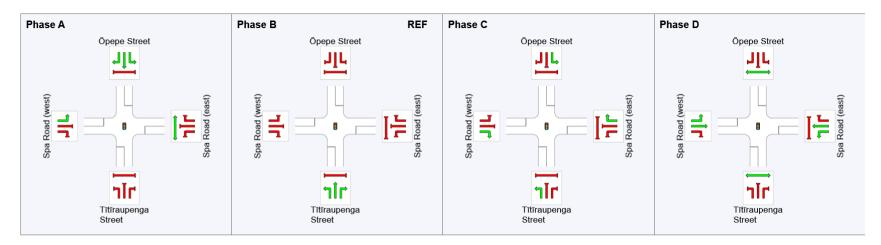
B1)]

New Site

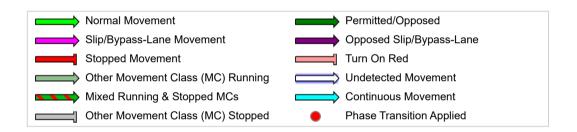
Site Category: (None)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program Phase Sequence: Leading Right Turn Reference Phase: Phase B


Input Phase Sequence: A, B, C, D
Output Phase Sequence: A, B, C, D

Phase Timing Summary

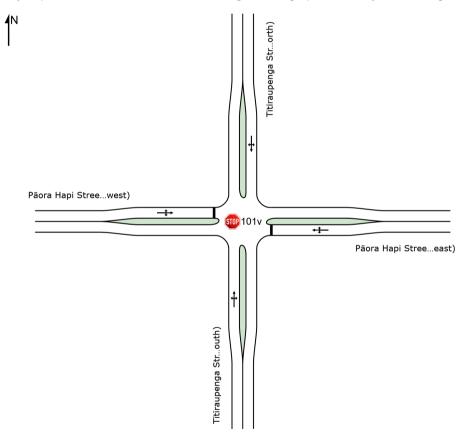

Phase	Α	В	С	D
Phase Change Time (sec)	89	0	23	46
Green Time (sec)	25	17	17	37
Phase Time (sec)	31	23	23	43
Phase Split	26%	19%	19%	36%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 8:44:28 pm
Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2053 AM Base Option B1 (Site Folder: 2053 Option

B1)]

New Site Site Category: (None) Stop (Two-Way)

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2053 AM Base Option B1 (Site Folder: 2053 Option B1)]

New Site

Site Category: (None) Stop (Two-Way)

Vehicle	Move _m	ent Perform	ance											_
Mov ID	Turn	INPUT Vo [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	Γītīraupen	ga Street (sou	ıth)											
1	L2	239	2	252	0.8	0.315	4.9	LOS A	0.3	2.1	0.06	0.23	0.07	39.3
2	T1	309	2	325	0.6	0.315	0.3	LOS A	0.3	2.1	0.06	0.23	0.07	47.4
3	R2	9	0	9	0.0	0.315	9.6	LOS A	0.3	2.1	0.06	0.23	0.07	45.8
Approac	ch	557	4	586	0.7	0.315	2.4	NA	0.3	2.1	0.06	0.23	0.07	43.6
East: Pa	āora Hapi :	Street (east)												
4	L2	26	0	27	0.0	0.414	16.0	LOS C	1.5	10.8	0.87	1.09	1.13	30.9
5	T1	57	0	60	0.0	0.414	32.4	LOS D	1.5	10.8	0.87	1.09	1.13	24.0
6	R2	5	0	5	0.0	0.414	28.9	LOS D	1.5	10.8	0.87	1.09	1.13	28.1
Approac	ch	88	0	93	0.0	0.414	27.4	LOS D	1.5	10.8	0.87	1.09	1.13	26.3
North: T	ītīraupeng	a Street (nort	th)											
7	L2	9	0	9	0.0	0.392	8.2	LOS A	0.7	4.8	0.10	0.03	0.12	47.8
8	T1	652	8	686	1.2	0.392	0.4	LOS A	0.7	4.8	0.10	0.03	0.12	49.1
9	R2	29	0	31	0.0	0.392	8.7	LOS A	0.7	4.8	0.10	0.03	0.12	38.0
Approac	ch	690	8	726	1.2	0.392	8.0	NA	0.7	4.8	0.10	0.03	0.12	48.6
West: P	āora Hapi	Street (west)												
10	L2	38	0	40	0.0	1.413	398.1	LOS F	52.8	372.6	1.00	6.30	12.60	3.7
11	T1	19	0	20	0.0	1.413	411.3	LOS F	52.8	372.6	1.00	6.30	12.60	3.5
12	R2	182	2	192	1.1	1.413	417.3	LOS F	52.8	372.6	1.00	6.30	12.60	4.5
Approac	ch	239	2	252	0.8	1.413	413.8	LOS F	52.8	372.6	1.00	6.30	12.60	4.3
All Vehi	cles	1574	14	1657	0.9	1.413	65.6	NA	52.8	372.6	0.26	1.11	2.05	18.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

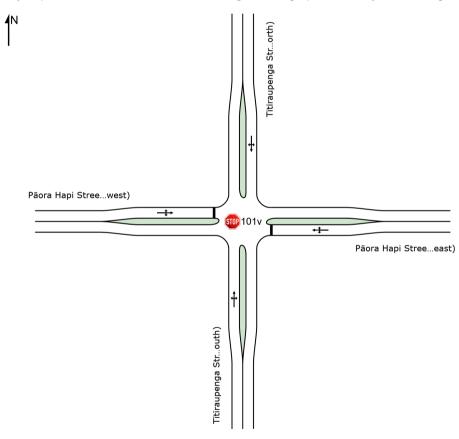
Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 8:44:28 pm


Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

Site 404v (Dā

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2053 PM Base Option B1 (Site Folder: 2053 Option

B1)]

New Site Site Category: (None) Stop (Two-Way)

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2053 PM Base Option B1 (Site Folder: 2053 Option B1)]

New Site

Site Category: (None) Stop (Two-Way)

Vehicle	e Movem	ent Perform	nance											_
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	Tītīraupenç	ga Street (sou	uth)											
1	L2	35	1	37	2.9	0.373	6.4	LOS A	0.4	2.5	0.05	0.04	0.07	40.6
2	T1	627	4	660	0.6	0.373	0.2	LOS A	0.4	2.5	0.05	0.04	0.07	49.3
3	R2	10	0	11	0.0	0.373	10.1	LOS B	0.4	2.5	0.05	0.04	0.07	47.6
Approa	ch	672	5	707	0.7	0.373	0.7	NA	0.4	2.5	0.05	0.04	0.07	48.7
East: Pa	āora Hapi :	Street (east)												
4	L2	15	0	16	0.0	0.279	14.1	LOS B	0.9	6.3	0.87	1.04	0.99	30.1
5	T1	22	0	23	0.0	0.279	34.0	LOS D	0.9	6.3	0.87	1.04	0.99	23.4
6	R2	10	0	11	0.0	0.279	41.4	LOS E	0.9	6.3	0.87	1.04	0.99	27.2
Approa	ch	47	0	49	0.0	0.279	29.2	LOS D	0.9	6.3	0.87	1.04	0.99	26.3
North: T	Tītīraupeng	ga Street (nor	th)											
7	L2	15	0	16	0.0	0.385	8.7	LOS A	0.6	4.1	0.09	0.03	0.11	47.8
8	T1	648	4	682	0.6	0.385	0.4	LOS A	0.6	4.1	0.09	0.03	0.11	49.1
9	R2	19	0	20	0.0	0.385	10.2	LOS B	0.6	4.1	0.09	0.03	0.11	38.0
Approa	ch	682	4	718	0.6	0.385	8.0	NA	0.6	4.1	0.09	0.03	0.11	48.7
West: P	aora Hapi	Street (west)												
10	L2	45	0	47	0.0	1.483	465.5	LOS F	49.2	344.7	1.00	5.95	12.26	3.2
11	T1	18	0	19	0.0	1.483	481.2	LOS F	49.2	344.7	1.00	5.95	12.26	3.0
12	R2	138	0	145	0.0	1.483	486.4	LOS F	49.2	344.7	1.00	5.95	12.26	3.9
Approa	ch	201	0	212	0.0	1.483	481.3	LOS F	49.2	344.7	1.00	5.95	12.26	3.7
All Vehi	cles	1602	9	1686	0.6	1.483	61.9	NA	49.2	344.7	0.21	0.80	1.64	19.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

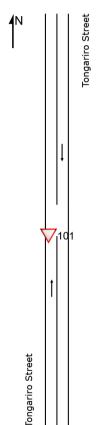
Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 8:44:29 pm

Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

▽ Site: 101 [TCG Bridge 2053 AM (Site Folder: 2053 Option B1)]

New Site

Site Category: (None) Give-Way (Two-Way)

▽ Site: 101 [TCG Bridge 2053 AM (Site Folder: 2053 Option B1)]

New Site

Site Category: (None) Give-Way (Two-Way)

Vehicle	Movem	ent Perform	ance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: T	ongariro S	Street												
2	T1	759	5.0	799	5.0	0.423	4.3	LOS A	0.0	0.0	0.00	0.53	0.00	54.5
Approac	ch	759	5.0	799	5.0	0.423	4.3	NA	0.0	0.0	0.00	0.53	0.00	54.5
North: T	ongariro S	Street												
8	T1	1755	5.0	1847	5.0	0.978	9.2	LOS A	0.0	0.0	0.00	0.46	0.00	47.6
Approac	ch	1755	5.0	1847	5.0	0.978	9.2	NA	0.0	0.0	0.00	0.46	0.00	47.6
All Vehic	cles	2514	5.0	2646	5.0	0.978	7.7	NA	0.0	0.0	0.00	0.48	0.00	49.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

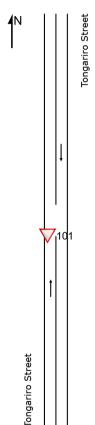
Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 8:44:30 pm

Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

▽ Site: 101 [TCG Bridge 2053 PM (Site Folder: 2053 Option B1)]

New Site

Site Category: (None) Give-Way (Two-Way)

▽ Site: 101 [TCG Bridge 2053 PM (Site Folder: 2053 Option B1)]

New Site

Site Category: (None) Give-Way (Two-Way)

Vehicle	Movemo	ent Perform	ance											
Mov ID	Turn	INPUT V0 [Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: T	Tongariro S	Street												
2	T1	1785	5.0	1879	5.0	0.995	11.6	LOS B	0.0	0.0	0.00	0.43	0.00	44.8
Approac	ch	1785	5.0	1879	5.0	0.995	11.6	NA	0.0	0.0	0.00	0.43	0.00	44.8
North: T	ongariro S	Street												
8	T1	912	5.0	960	5.0	0.508	4.4	LOS A	0.0	0.0	0.00	0.53	0.00	54.4
Approac	ch	912	5.0	960	5.0	0.508	4.4	NA	0.0	0.0	0.00	0.53	0.00	54.4
All Vehic	cles	2697	5.0	2839	5.0	0.995	9.2	NA	0.0	0.0	0.00	0.47	0.00	47.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

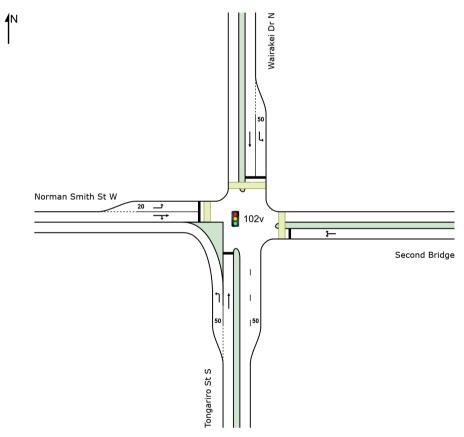
Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 8:44:30 pm


Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

Site: 102v [Norman / Wairakei 2053 AM Base Option B2 (Site Folder: 2053 Option B2)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Site: 102v [Norman / Wairakei 2053 AM Base Option B2 (Site Folder: 2053 Option B2)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 140 seconds (Site Practical Cycle Time)

Vehicle	e Movem	ent Perform	ance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	Tongariro S	St S												
1	L2	471	31	496	6.6	0.279	4.5	LOS A	0.0	0.0	0.00	0.46	0.00	48.1
2	T1	131	11	138	8.4	0.227	36.3	LOS D	6.8	50.7	0.77	0.63	0.77	46.9
Approa	ch	602	42	634	7.0	0.279	11.4	LOS B	6.8	50.7	0.17	0.50	0.17	47.3
East: S	econd Brid	lge												
4	L2	1	0	1	0.0	1.877	844.4	LOS F	81.7	600.7	1.00	2.25	4.16	3.9
6	R2	291	17	306	5.8	* 1.877	844.4	LOS F	81.7	600.7	1.00	2.25	4.16	19.0
Approa	ch	292	17	307	5.8	1.877	844.4	LOS F	81.7	600.7	1.00	2.25	4.16	19.0
North: \	Wairakei D	r N												
7	L2	481	15	506	3.1	1.871	845.5	LOS F	135.4	973.4	1.00	2.35	4.14	19.1
8	T1	947	20	997	2.1	* 2.103	1047.7	LOS F	291.2	2075.5	1.00	3.67	4.47	16.8
Approa	ch	1428	35	1503	2.5	2.103	979.6	LOS F	291.2	2075.5	1.00	3.22	4.36	17.5
West: N	lorman Sm	nith St W												
10	L2	20	1	21	5.0	0.034	36.8	LOS D	0.9	6.8	0.69	0.67	0.69	46.8
11	T1	933	17	982	1.8	* 2.146	1085.5	LOS F	535.8	3805.4	1.00	3.21	4.51	3.7
12	R2	777	12	818	1.5	2.146	1090.2	LOS F	535.8	3805.4	1.00	3.21	4.51	3.8
Approa	ch	1730	30	1821	1.7	2.146	1075.5	LOS F	535.8	3805.4	1.00	3.18	4.47	4.0
All Vehi	cles	4052	124	4265	3.1	2.146	867.0	LOS F	535.8	3805.4	0.87	2.73	3.77	12.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	strian Movem	ent Perform	ance									
Mov ID	Crossing	Input Vol.	Dem. Flow ped/h	Aver. Delay sec	Level of Service	AVERAGE BAC [Ped ped	K OF QUEUE Dist] m	Prop. Que	Effective T Stop Rate	ravel Time sec	Travel Dist. m	Aver. Speed m/sec
East:	Second Bridge											
P2	Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	226.3	210.6	0.93
North	: Wairakei Dr N											
P3	Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	90.3	33.9	0.38
West	Norman Smith	St W										
P4	Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	88.8	31.9	0.36
All Pe	edestrians	50	158	64.3	LOS F	0.2	0.2	0.96	0.96	135.1	92.1	0.68

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Tuesday, 23 April 2024 10:24:05 am
Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

Site: 102v [Norman / Wairakei 2053 AM Base Option B2 (Site Folder: 2053 Option B2)]

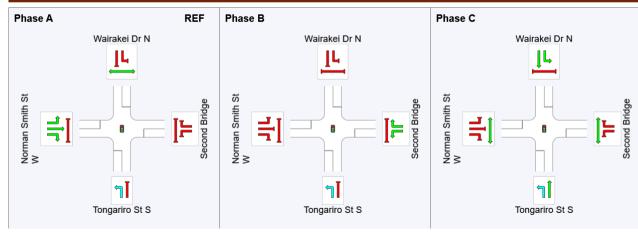
New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 140 seconds (Site Practical Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Opposed Turns Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Summary

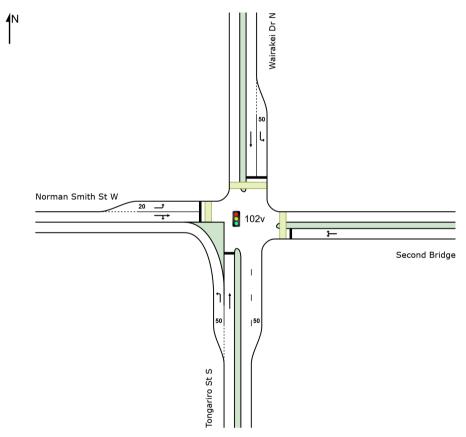
Phase	Α	В	С
Phase Change Time (sec)	0	69	88
Green Time (sec)	63	13	46
Phase Time (sec)	69	19	52
Phase Split	49%	14%	37%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Tuesday, 23 April 2024 10:24:05 am
Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

Site: 102v [Norman / Wairakei 2053 PM Base Option B2 (Site Folder: 2053 Option B2)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Site: 102v [Norman / Wairakei 2053 PM Base Option B2 (Site Folder: 2053 Option B2)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Vehicle	e Movem	ent Perform	ance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	Tongariro S	St S												
1	L2	1601	26	1685	1.6	0.918	6.8	LOS A	0.0	0.0	0.00	0.44	0.00	45.5
2	T1	105	1	111	1.0	0.360	49.3	LOS D	5.9	41.4	0.94	0.74	0.94	45.8
Approac	ch	1706	27	1796	1.6	0.918	9.4	LOS A	5.9	41.4	0.06	0.46	0.06	45.6
East: Se	econd Brid	lge												
4	L2	1	0	1	0.0	1.835	804.6	LOS F	329.2	2330.1	1.00	2.51	4.52	4.1
6	R2	1228	16	1293	1.3	* 1.835	804.6	LOS F	329.2	2330.1	1.00	2.51	4.52	19.8
Approac	ch	1229	16	1294	1.3	1.835	804.6	LOS F	329.2	2330.1	1.00	2.51	4.52	19.8
North: V	Vairakei D	r N												
7	L2	173	8	182	4.6	* 1.736	713.1	LOS F	43.5	316.3	1.00	2.36	4.39	21.1
8	T1	286	7	301	2.4	1.127	186.9	LOS F	35.6	254.3	1.00	1.70	2.27	36.9
Approac	ch	459	15	483	3.3	1.736	385.2	LOS F	43.5	316.3	1.00	1.95	3.07	28.8
West: N	Iorman Sm	nith St W												
10	L2	5	0	5	0.0	0.015	47.3	LOS D	0.2	1.7	0.84	0.64	0.84	46.0
11	T1	574	22	604	3.8	* 1.832	796.7	LOS F	266.7	1911.9	1.00	3.21	4.52	4.9
12	R2	428	6	451	1.4	1.832	801.4	LOS F	266.7	1911.9	1.00	3.21	4.52	5.0
Approac	ch	1007	28	1060	2.8	1.832	795.0	LOS F	266.7	1911.9	1.00	3.20	4.50	5.1
All Vehi	cles	4401	86	4633	2.0	1.835	450.4	LOS F	329.2	2330.1	0.63	1.81	2.64	18.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pede	strian Movem	nent Perform	ance									
Mov ID	Crossing	Input Vol.	Dem. Flow ped/h	Aver. Delay sec	Level of Service	AVERAGE BAC [Ped ped	K OF QUEUE Dist] m	Prop. Que	Effective Ti Stop Rate	ravel Time sec	Travel Dist. m	Aver. Speed m/sec
East:	Second Bridge											
P2	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	216.3	210.6	0.97
North	: Wairakei Dr N											
P3	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	80.3	33.9	0.42
West	Norman Smith	St W										
P4	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	78.8	31.9	0.40
All Pe	destrians	50	158	54.3	LOS E	0.2	0.2	0.95	0.95	125.1	92.1	0.74

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Tuesday, 23 April 2024 10:24:04 am
Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

PHASING SUMMARY

Site: 102v [Norman / Wairakei 2053 PM Base Option B2 (Site Folder: 2053 Option B2)]

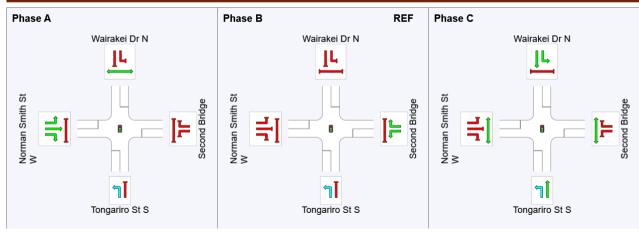
New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Opposed Turns Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Summary

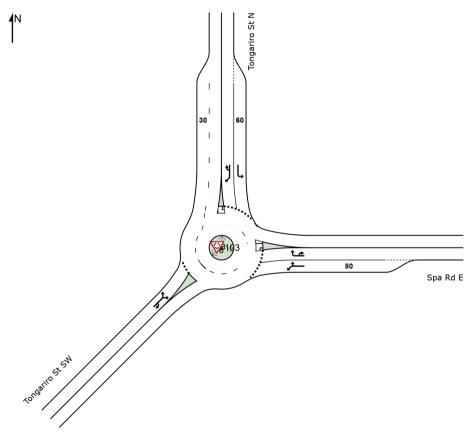
Phase	Α	В	С
Phase Change Time (sec)	77	0	52
Green Time (sec)	37	46	19
Phase Time (sec)	43	52	25
Phase Split	36%	43%	21%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Tuesday, 23 April 2024 10:24:04 am
Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

▼ Site: 103 [Spa / Tongariro 2053 AM Base Option B2 (Site Folder: 2053 Option B2)]

New Site

Site Category: (None)

Roundabout

▼ Site: 103 [Spa / Tongariro 2053 AM Base Option B2 (Site Folder: 2053 Option B2)]

New Site

Site Category: (None)

Roundabout

Vehicle	Moveme	ent Perform	ance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMANE [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Sp	a Rd E													
4a	L1	42	0	44	0.0	0.165	11.7	LOS B	1.0	7.0	0.82	0.88	0.82	41.8
6	R2	384	23	404	6.0	0.541	17.2	LOS B	5.3	39.2	0.96	1.06	1.19	41.2
6u	U	1	1	1	100.0	0.541	24.2	LOS C	5.3	39.2	0.97	1.07	1.22	40.0
Approac	h	427	24	449	5.6	0.541	16.7	LOS B	5.3	39.2	0.94	1.04	1.16	41.2
North: To	ongariro S	it N												
7	L2	839	15	883	1.8	0.644	5.2	LOS A	7.6	53.9	0.47	0.51	0.47	45.5
9a	R1	784	17	825	2.2	0.592	6.6	LOS A	6.4	45.8	0.41	0.56	0.41	44.7
9u	U	80	0	84	0.0	0.592	9.0	LOS A	6.4	45.8	0.41	0.56	0.41	46.1
Approac	:h	1703	32	1793	1.9	0.644	6.0	LOS A	7.6	53.9	0.44	0.54	0.44	45.2
SouthW	est: Tonga	ariro St SW												
30a	L1	305	18	321	5.9	0.531	5.0	LOS A	3.7	27.1	0.74	0.83	0.84	29.2
32a	R1	68	0	72	0.0	0.531	7.3	LOS A	3.7	27.1	0.74	0.83	0.84	29.2
32u	U	1	0	1	0.0	0.531	8.7	LOS A	3.7	27.1	0.74	0.83	0.84	29.8
Approac	h	374	18	394	4.8	0.531	5.4	LOS A	3.7	27.1	0.74	0.83	0.84	29.2
All Vehic	cles	2504	74	2636	3.0	0.644	7.7	LOSA	7.6	53.9	0.57	0.66	0.62	41.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

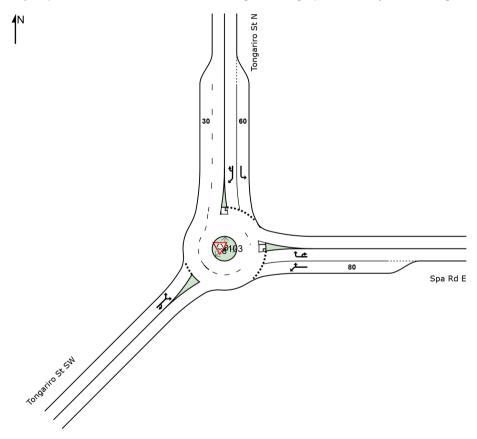
Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 8:46:11 pm


Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

▼ Site: 103 [Spa / Tongariro 2053 PM Base Option B2 (Site Folder: 2053 Option B2)]

New Site

Site Category: (None)

Roundabout

▼ Site: 103 [Spa / Tongariro 2053 PM Base Option B2 (Site Folder: 2053 Option B2)]

New Site

Site Category: (None)

Roundabout

Vehicle	Moveme	ent Perform	ance											
Mov ID	Turn	INPUT Vo [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Sp	oa Rd E													
4a	L1	19	0	20	0.0	0.272	8.2	LOS A	1.5	10.7	0.69	0.83	0.69	42.8
6	R2	1007	18	1060	1.8	0.889	22.8	LOS C	20.5	145.6	0.96	1.27	1.79	39.0
6u	U	1	1	1	100.0	0.889	31.4	LOS C	20.5	145.6	1.00	1.35	1.98	37.3
Approac	ch	1027	19	1081	1.9	0.889	22.5	LOS C	20.5	145.6	0.95	1.27	1.77	39.1
North: T	ongariro S	t N												
7	L2	209	7	220	3.3	0.190	4.7	LOS A	1.3	9.0	0.23	0.51	0.23	46.0
9a	R1	446	6	469	1.3	0.358	6.3	LOS A	3.1	21.6	0.24	0.56	0.24	45.0
9u	U	90	0	95	0.0	0.358	8.9	LOS A	3.1	21.6	0.24	0.56	0.24	46.4
Approac	ch	745	13	784	1.7	0.358	6.2	LOS A	3.1	21.6	0.24	0.55	0.24	45.5
SouthW	est: Tonga	riro St SW												
30a	L1	586	9	617	1.5	1.670	617.6	LOS F	185.7	1315.1	1.00	11.31	18.61	4.7
32a	R1	67	0	71	0.0	1.670	618.8	LOS F	185.7	1315.1	1.00	11.31	18.61	4.6
32u	U	1	0	1	0.0	1.670	620.2	LOS F	185.7	1315.1	1.00	11.31	18.61	4.1
Approac	ch	654	9	688	1.4	1.670	617.7	LOS F	185.7	1315.1	1.00	11.31	18.61	4.7
All Vehic	cles	2426	41	2554	1.7	1.670	178.0	LOS F	185.7	1315.1	0.75	3.75	5.84	14.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

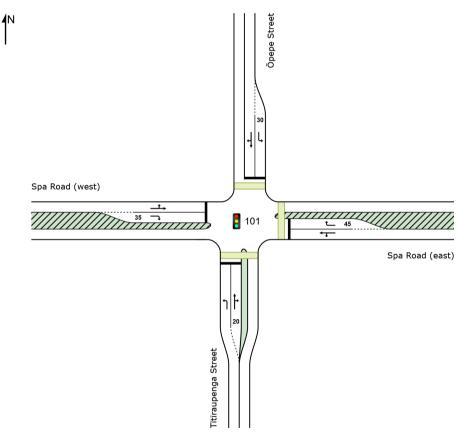
Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2053 AM Base Option B2 (Site Folder: 2053 Option

B2)]

New Site

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2053 AM Base Option B2 (Site Folder: 2053 Option

B2)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Vehicle	e Movem	ent Perform	nance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: 7	Γītīraupenç	ga Street												
1	L2	198	1	208	0.5	0.645	46.7	LOS D	10.5	73.8	0.91	0.80	0.91	31.7
2	T1	96	1	101	1.0	* 1.276	309.2	LOS F	17.5	124.4	1.00	1.63	3.02	15.2
3	R2	11	1	12	9.1	1.276	313.8	LOS F	17.5	124.4	1.00	1.63	3.02	30.7
Approac	ch	305	3	321	1.0	1.276	139.0	LOS F	17.5	124.4	0.94	1.09	1.65	22.3
East: Sp	pa Road (e	east)												
4	L2	120	2	126	1.7	1.536	540.4	LOS F	165.5	1208.1	1.00	2.97	3.77	24.1
5	T1	624	35	657	5.6	1.536	534.2	LOS F	165.5	1208.1	1.00	2.97	3.77	23.9
6	R2	165	1	174	0.6	0.663	59.1	LOS E	10.0	70.3	1.00	0.83	1.03	45.2
Approac	ch	909	38	957	4.2	1.536	448.8	LOS F	165.5	1208.1	1.00	2.58	3.28	26.4
North: C	Dpepe Stre	eet												
7	L2	47	1	49	2.1	0.216	36.2	LOS D	1.9	13.8	0.93	0.73	0.93	46.9
8	T1	72	1	76	1.4	0.199	42.4	LOS D	3.9	27.5	0.87	0.68	0.87	38.4
9	R2	4	0	4	0.0	0.199	46.9	LOS D	3.9	27.5	0.87	0.68	0.87	37.6
Approac	ch	123	2	129	1.6	0.216	40.1	LOS D	3.9	27.5	0.89	0.70	0.89	44.1
West: S	pa Road (west)												
10	L2	1	0	1	0.0	* 1.476	487.9	LOS F	185.6	1345.3	1.00	2.96	3.58	10.5
11	T1	869	36	915	4.1	1.476	481.5	LOS F	185.6	1345.3	1.00	2.96	3.58	25.3
12	R2	251	2	264	8.0	* 1.516	522.5	LOS F	54.2	382.3	1.00	2.07	3.79	6.6
Approac	ch	1121	38	1180	3.4	1.516	490.7	LOS F	185.6	1345.3	1.00	2.76	3.63	22.4
All Vehic	cles	2458	81	2587	3.3	1.536	409.0	LOS F	185.6	1345.3	0.99	2.38	3.11	24.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance													
Mov ID	Crossing	Input Vol. ped/h	Dem. Flow ped/h	Aver. Delay sec	Level of Service	AVERAGE BACK [Ped ped	OF QUEUE Dist] m	Prop. Que	Effective Tr Stop Rate	avel Time sec	Travel Dist. m	Aver. Speed m/sec	
South: Titīraupenga Street													
P1	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	230.3	228.8	0.99	
East:	Spa Road (ea	st)											
P2	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	221.0	216.8	0.98	
North: Ōpepe Street													
P3	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	218.8	213.9	0.98	
All Pe	edestrians	150	158	54.3	LOS E	0.2	0.2	0.95	0.95	223.4	219.8	0.98	

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 8:46:12 pm

PHASING SUMMARY

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2053 AM Base Option B2 (Site Folder: 2053 Option

B2)]

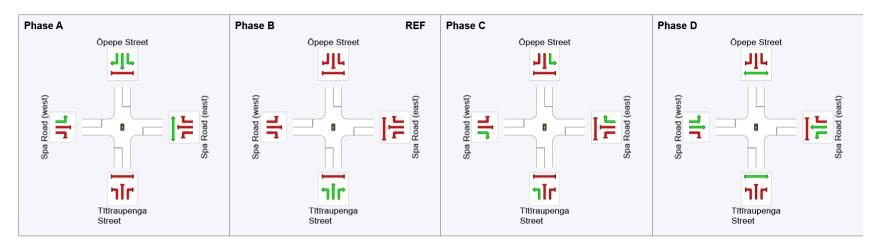
New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program Phase Sequence: Leading Right Turn Reference Phase: Phase B


Input Phase Sequence: A, B, C, D
Output Phase Sequence: A, B, C, D

Phase Timing Summary

Phase	Α	В	С	D
Phase Change Time (sec)	89	0	12	35
Green Time (sec)	25	6	17	48
Phase Time (sec)	31	12	23	54
Phase Split	26%	10%	19%	45%

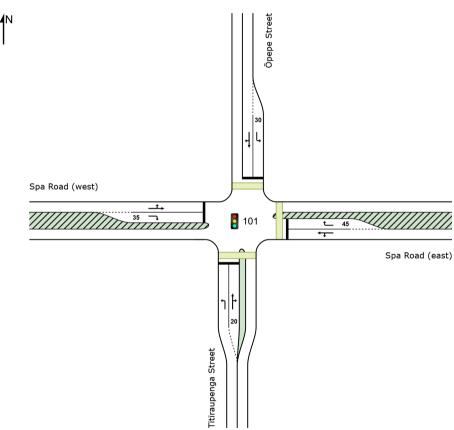
See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 8:46:12 pm
Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9


Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2053 PM Base Option B2 (Site Folder: 2053 Option

B2)]

New Site

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2053 PM Base Option B2 (Site Folder: 2053 Option

B2)]

New Site

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Vehicle Movement Performance Mov Turn INPUT VOLUMES DEMAND FLOWS Deg. Aver. Level of 95% BACK OF QUEUE Prop. Effective Aver. No. Aver.														
Mov ID	Turn	INPUT VO [Total veh/h	LUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: T	ītīraupeng	a Street												
1	L2	177	1	186	0.6	0.480	45.1	LOS D	9.1	64.3	0.88	0.79	0.88	32.1
2	T1	42	1	44	2.4	* 0.574	64.7	LOS E	3.4	24.1	1.00	0.77	1.05	34.1
3	R2	10	0	11	0.0	0.574	69.3	LOS E	3.4	24.1	1.00	0.77	1.05	44.3
Approac	h	229	2	241	0.9	0.574	49.8	LOS D	9.1	64.3	0.91	0.79	0.92	34.5
East: Sp	a Road (e	ast)												
4	L2	74	1	78	1.4	1.512	518.3	LOS F	195.2	1404.4	1.00	2.98	3.69	24.7
5	T1	820	28	863	3.4	* 1.512	512.1	LOS F	195.2	1404.4	1.00	2.98	3.69	24.5
6	R2	29	1	31	3.4	0.112	52.6	LOS D	1.6	11.3	0.90	0.72	0.90	45.6
Approac	h	923	30	972	3.3	1.512	498.1	LOS F	195.2	1404.4	1.00	2.91	3.60	24.9
North: Ō	pepe Stre	et												
7	L2	51	1	54	2.0	* 0.220	35.5	LOS D	2.1	14.9	0.93	0.73	0.93	47.0
8	T1	109	1	115	0.9	0.292	43.3	LOS D	5.9	41.3	0.89	0.71	0.89	38.2
9	R2	3	0	3	0.0	0.292	47.9	LOS D	5.9	41.3	0.89	0.71	0.89	37.5
Approac	h	163	2	172	1.2	0.292	41.0	LOS D	5.9	41.3	0.90	0.72	0.90	43.4
West: Sp	oa Road (v	vest)												
10	L2	7	0	7	0.0	1.005	102.5	LOS F	56.0	408.3	1.00	1.34	1.57	28.9
11	T1	579	29	609	5.0	1.005	96.1	LOS F	56.0	408.3	1.00	1.34	1.57	42.0
12	R2	150	1	158	0.7	0.569	56.8	LOS E	8.8	62.0	0.98	0.81	0.98	29.4
Approac	h	736	30	775	4.1	1.005	88.2	LOS F	56.0	408.3	1.00	1.23	1.45	41.2
All Vehic	les	2051	64	2159	3.1	1.512	264.6	LOS F	195.2	1404.4	0.98	1.90	2.31	30.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance													
Mov ID	Crossing	Input Vol. ped/h	Dem. Flow ped/h	Aver. Delay sec	Level of Service	AVERAGE BACK [Ped ped	OF QUEUE Dist] m	Prop. Que	Effective Tr Stop Rate	avel Time sec	Travel Dist. m	Aver. Speed m/sec	
South: Titīraupenga Street													
P1	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	230.3	228.8	0.99	
East:	Spa Road (ea	st)											
P2	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	221.0	216.8	0.98	
North: Ōpepe Street													
P3	Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	218.8	213.9	0.98	
All Pe	edestrians	150	158	54.3	LOS E	0.2	0.2	0.95	0.95	223.4	219.8	0.98	

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 8:46:13 pm

PHASING SUMMARY

Site: 101 [Spa / Ōpepe/ Tītīraupenga Base 2053 PM Base Option B2 (Site Folder: 2053 Option

B2)]

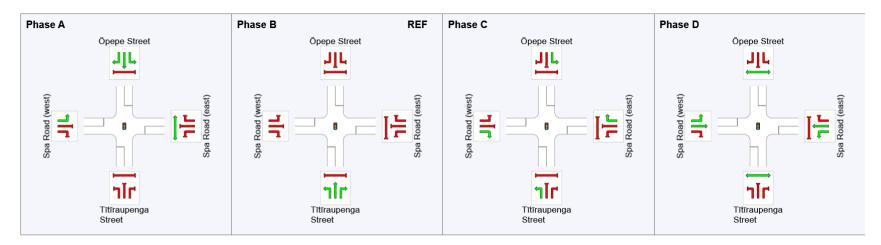
New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program Phase Sequence: Leading Right Turn Reference Phase: Phase B


Input Phase Sequence: A, B, C, D
Output Phase Sequence: A, B, C, D

Phase Timing Summary

Phase	Α	В	С	D
Phase Change Time (sec)	89	0	12	36
Green Time (sec)	25	6	18	47
Phase Time (sec)	31	12	24	53
Phase Split	26%	10%	20%	44%

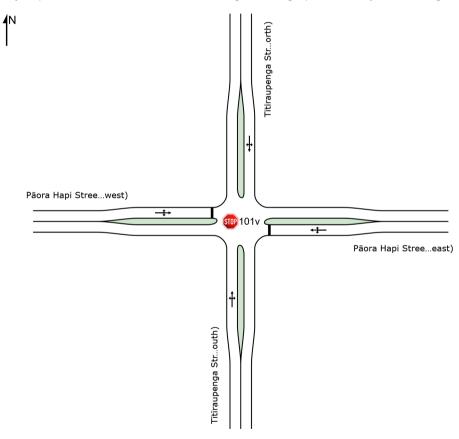
See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 8:46:13 pm
Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9


© Sites 404v [Dēs

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2053 AM Base Option B2 (Site Folder: 2053 Option

B2)] New Site

Site Category: (None) Stop (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2053 AM Base Option B2 (Site Folder: 2053 Option B2)]

New Site

Site Category: (None) Stop (Two-Way)

Vehicle	Movemo	ent Perform	nance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	Γītīraupenç	ga Street (sou	uth)											
1	L2	186	3	196	1.6	0.321	4.7	LOS A	0.2	1.1	0.03	0.18	0.03	39.9
2	T1	381	2	401	0.5	0.321	0.1	LOS A	0.2	1.1	0.03	0.18	0.03	48.2
3	R2	9	0	9	0.0	0.321	6.7	LOS A	0.2	1.1	0.03	0.18	0.03	46.6
Approac	ch	576	5	606	0.9	0.321	1.7	NA	0.2	1.1	0.03	0.18	0.03	45.2
East: Pa	āora Hapi 🤅	Street (east)												
4	L2	22	0	23	0.0	0.146	9.3	LOS A	0.5	3.4	0.64	0.97	0.64	37.6
5	T1	30	0	32	0.0	0.146	18.3	LOS C	0.5	3.4	0.64	0.97	0.64	29.3
6	R2	5	0	5	0.0	0.146	16.6	LOS C	0.5	3.4	0.64	0.97	0.64	35.0
Approac	ch	57	0	60	0.0	0.146	14.7	LOS B	0.5	3.4	0.64	0.97	0.64	33.0
North: T	ītīraupeng	a Street (nor	th)											
7	L2	4	0	4	0.0	0.234	7.8	LOS A	0.4	3.0	0.13	0.05	0.13	47.6
8	T1	368	4	387	1.1	0.234	0.4	LOS A	0.4	3.0	0.13	0.05	0.13	48.8
9	R2	28	0	29	0.0	0.234	7.9	LOS A	0.4	3.0	0.13	0.05	0.13	37.9
Approac	ch	400	4	421	1.0	0.234	1.0	NA	0.4	3.0	0.13	0.05	0.13	48.1
West: P	āora Hapi	Street (west)												
10	L2	38	0	40	0.0	1.199	205.2	LOS F	45.1	322.1	1.00	5.82	10.97	6.5
11	T1	23	0	24	0.0	1.199	213.4	LOS F	45.1	322.1	1.00	5.82	10.97	6.2
12	R2	268	8	282	3.0	1.199	217.6	LOS F	45.1	322.1	1.00	5.82	10.97	7.8
Approac	ch	329	8	346	2.4	1.199	215.9	LOS F	45.1	322.1	1.00	5.82	10.97	7.5
All Vehi	cles	1362	17	1434	1.2	1.199	53.8	NA	45.1	322.1	0.32	1.54	2.73	21.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

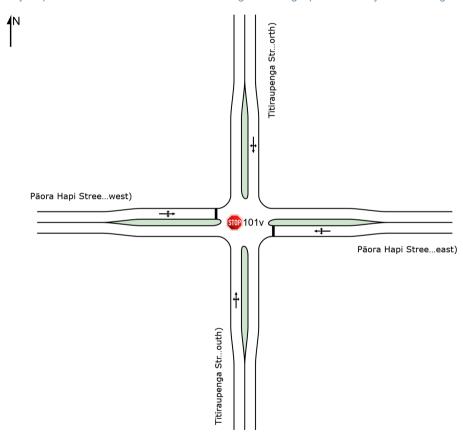
Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 8:46:14 pm

© Sites 404v [Dēs

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2053 PM Base Option B2 (Site Folder: 2053 Option B2)]

New Site Site Category: (None) Stop (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Site: 101v [Pāora Hapi/ Tītīraupenga Base 2053 PM Base Option B2 (Site Folder: 2053 Option B2)]

New Site

Site Category: (None) Stop (Two-Way)

Vehicle	Movemo	ent Perform	nance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] veh/h	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: 7	Γītīraupenç	ga Street (sou	uth)											
1	L2	125	2	132	1.6	0.193	4.7	LOS A	0.1	1.0	0.05	0.20	0.05	39.6
2	T1	208	1	219	0.5	0.193	0.1	LOS A	0.1	1.0	0.05	0.20	0.05	47.8
3	R2	10	0	11	0.0	0.193	6.3	LOS A	0.1	1.0	0.05	0.20	0.05	46.2
Approac	ch	343	3	361	0.9	0.193	2.0	NA	0.1	1.0	0.05	0.20	0.05	44.5
East: Pa	āora Hapi 🤅	Street (east)												
4	L2	11	0	12	0.0	0.110	9.2	LOS A	0.4	2.6	0.59	1.00	0.59	38.9
5	T1	33	0	35	0.0	0.110	13.6	LOS B	0.4	2.6	0.59	1.00	0.59	30.3
6	R2	8	0	8	0.0	0.110	13.7	LOS B	0.4	2.6	0.59	1.00	0.59	36.4
Approac	ch	52	0	55	0.0	0.110	12.7	LOS B	0.4	2.6	0.59	1.00	0.59	33.0
North: T	ītīraupeng	a Street (nor	th)											
7	L2	8	0	8	0.0	0.238	6.0	LOS A	0.5	3.5	0.14	0.08	0.14	47.4
8	T1	361	1	380	0.3	0.238	0.3	LOS A	0.5	3.5	0.14	0.08	0.14	48.7
9	R2	46	0	48	0.0	0.238	6.2	LOS A	0.5	3.5	0.14	0.08	0.14	37.7
Approac	ch	415	1	437	0.2	0.238	1.0	NA	0.5	3.5	0.14	0.08	0.14	47.4
West: P	āora Hapi	Street (west)												
10	L2	34	0	36	0.0	0.857	20.7	LOS C	8.7	61.7	0.86	1.92	2.67	23.1
11	T1	23	0	24	0.0	0.857	27.9	LOS D	8.7	61.7	0.86	1.92	2.67	22.3
12	R2	272	7	286	2.6	0.857	30.9	LOS D	8.7	61.7	0.86	1.92	2.67	25.5
Approac	ch	329	7	346	2.1	0.857	29.7	LOS D	8.7	61.7	0.86	1.92	2.67	25.1
All Vehic	cles	1139	11	1199	1.0	0.857	10.1	NA	8.7	61.7	0.34	0.69	0.87	36.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

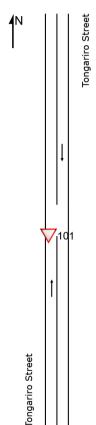
Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 8:46:15 pm

▽ Site: 101 [TCG Bridge 2053 AM (Site Folder: 2053 Option B2)]

New Site

Site Category: (None) Give-Way (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

▽ Site: 101 [TCG Bridge 2053 AM (Site Folder: 2053 Option B2)]

New Site

Site Category: (None) Give-Way (Two-Way)

Vehicle	Movem	ent Perform	ance											
Mov ID	Turn	INPUT V([Total veh/h	DLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: Tongariro Street														
2	T1	602	5.0	634	5.0	0.336	4.3	LOS A	0.0	0.0	0.00	0.53	0.00	54.6
Approac	h	602	5.0	634	5.0	0.336	4.3	NA	0.0	0.0	0.00	0.53	0.00	54.6
North: To	ongariro S	Street												
8	T1	1724	5.0	1815	5.0	0.961	7.7	LOS A	0.0	0.0	0.00	0.48	0.00	49.5
Approac	:h	1724	5.0	1815	5.0	0.961	7.7	NA	0.0	0.0	0.00	0.48	0.00	49.5
All Vehic	cles	2326	5.0	2448	5.0	0.961	6.8	NA	0.0	0.0	0.00	0.50	0.00	50.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

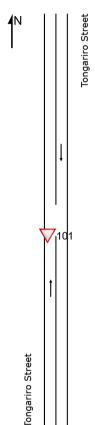
Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 8:46:16 pm

▽ Site: 101 [TCG Bridge 2053 PM (Site Folder: 2053 Option B2)]

New Site

Site Category: (None) Give-Way (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Created: Tuesday, 23 April 2024 10:25:16 am
Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

▽ Site: 101 [TCG Bridge 2053 PM (Site Folder: 2053 Option B2)]

New Site

Site Category: (None) Give-Way (Two-Way)

Vehicle	Movemo	ent Perform	ance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: Tongariro Street														
2	T1	1706	5.0	1796	5.0	0.951	7.1	LOS A	0.0	0.0	0.00	0.49	0.00	50.3
Approac	ch	1706	5.0	1796	5.0	0.951	7.1	NA	0.0	0.0	0.00	0.49	0.00	50.3
North: To	ongariro S	treet												
8	T1	714	5.0	752	5.0	0.398	4.3	LOS A	0.0	0.0	0.00	0.53	0.00	54.5
Approac	ch	714	5.0	752	5.0	0.398	4.3	NA	0.0	0.0	0.00	0.53	0.00	54.5
All Vehic	cles	2420	5.0	2547	5.0	0.951	6.3	NA	0.0	0.0	0.00	0.50	0.00	51.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

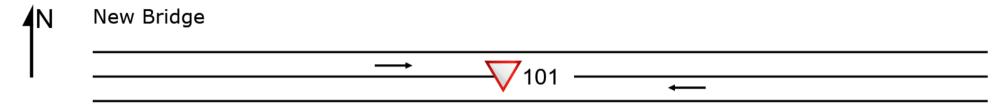
Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 8:46:16 pm

▽ Site: 101 [New Bridge 2053 AM (Site Folder: 2053 Option B2)]

New Site

Site Category: (None) Give-Way (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

New Bridge

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Created: Tuesday, 23 April 2024 10:25:18 am
Project: C:\Users\NZCK32050\WSP O365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

▽ Site: 101 [New Bridge 2053 AM (Site Folder: 2053 Option B2)]

New Site

Site Category: (None) Give-Way (Two-Way)

Vehicle	Moveme	nt Perform	ance											
Mov ID	Turn	INPUT V0 [Total veh/h	DLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Ne	East: New Bridge													
8	T1	291	5.0	306	5.0	0.162	4.2	LOS A	0.0	0.0	0.00	0.53	0.00	54.7
Approac	ch	291	5.0	306	5.0	0.162	4.2	NA	0.0	0.0	0.00	0.53	0.00	54.7
West: N	ew Bridge													
2	T1	1414	5.0	1488	5.0	0.788	4.8	LOS A	0.0	0.0	0.00	0.52	0.00	53.7
Approac	ch	1414	5.0	1488	5.0	0.788	4.8	NA	0.0	0.0	0.00	0.52	0.00	53.7
All Vehic	cles	1705	5.0	1795	5.0	0.788	4.7	NA	0.0	0.0	0.00	0.52	0.00	53.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

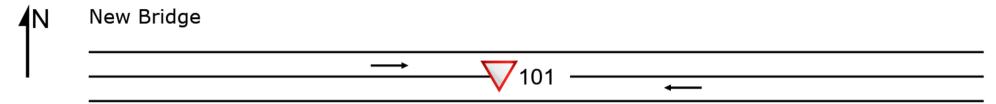
Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 8:46:17 pm

▽ Site: 101 [New Bridge 2053 PM (Site Folder: 2053 Option B2)]

New Site

Site Category: (None) Give-Way (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

New Bridge

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Created: Tuesday, 23 April 2024 10:25:22 am
Project: C:\Users\NZCK32050\WSP 0365\NZ Project - Taupo DC Northern Access Study (1-C2420.00) - General\04 SIDRA\Stage 1\Taupo - Base models and Options - IWv3 - Copy.sip9

▽ Site: 101 [New Bridge 2053 PM (Site Folder: 2053 Option B2)]

New Site

Site Category: (None) Give-Way (Two-Way)

Vehicle	Moveme	nt Perform	ance											
Mov ID	Turn	INPUT V0 [Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: New Bridge														
8	T1	1228	5.0	1293	5.0	0.684	4.6	LOS A	0.0	0.0	0.00	0.52	0.00	54.1
Approac	ch	1228	5.0	1293	5.0	0.684	4.6	NA	0.0	0.0	0.00	0.52	0.00	54.1
West: N	ew Bridge													
2	T1	747	5.0	786	5.0	0.416	4.3	LOS A	0.0	0.0	0.00	0.53	0.00	54.5
Approac	ch	747	5.0	786	5.0	0.416	4.3	NA	0.0	0.0	0.00	0.53	0.00	54.5
All Vehic	cles	1975	5.0	2079	5.0	0.684	4.5	NA	0.0	0.0	0.00	0.53	0.00	54.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP NEW ZEALAND LIMITED | Licence: NETWORK / Enterprise | Processed: Monday, 15 April 2024 8:46:18 pm

APPENDIX E

DETAILED MCA TABLE

Note: Where it says 2053, this references 2053+ (Full Development Scenario).

Taupō District Council

Multi Criteria Analysis		A1 - Four lane bridge at existing location	B1 - Retain the existing two lane bridge + new two lane bridge at Õpepe Street	B2 - Retain the existing two lane bridge + new two lane bridge at Waikato Street	D1 - Three lane (tidal flow) bridge at existing location
Criteria	Consideration				
	Support Growth to the North of Taupō & Improve Efficiency of the Road Network	Increasing the number of vehicle lanes from two to four will increase the vehicle capacity over the Waikato River. This will improve the bottleneck issue and reduce the congestion for vehicles. Based on the Taupo Model Update, this will improve the Level of Service (LOS) for the Bridge, from LOS F (Present) to LOS C/D in 2033 in both the morning and evening peak hours. However, in 2053, it is expected that there will still be some widespread congestion issues throughout the network due to significant growth in the northern parts of Taupo, particularly on the bridge and along Norman Smith Road and Acacia Bay Road. Travel times in the peak direction in AM and PM Peak in 2033 and in 2053 will reduce in comparison to the base option. In 2053, travel times are expected to reduce by approximately 4 minutes in the peak direction during the morning peak, when travelling into the CBD using the TCG bridge from Huka Falls when compared against the base scenario. Similarly, travel times will reduce by approximately 6 minutes when travelling to the CBD using the TCG bridge from Acacia Bay when compared against the base scenario. Both Option A1 and D1, have similar travel times but is higher compared to Option B1 and B2 in the 2053 scenario. All vehicles will still utilise the one route at the TCG Bridge, which does not ease the pressure off the existing traffic network, particularly at the Spa Road / Tongariro Roundabout. This has also lead to Redoubt Road being used as an alternative route for the Northbound Traffic on Tongariro St.	on the Taupo Model update, this will improve the LOS for the TCG bridge to LOS D (morning peak) and E (evening peak) from F (present) in 2033. The second connection	Similar to Option B1, the new bridge diverts some traffic away from the existing bridge, separating the flow into two routes. This improvement increases overall capacity and alleviates congestion. Based on the Taupo Model update, this will improve the LOS for the TCG bridge to LOS D (morning and evening peak) from F (present) in 2033. The second connection will also alleviate congestion at the Spa Road / Tongariro St Roundabout and the western end of Spa Road, diverting some traffic away from the CBD. However, in 2053, it is expected that there will still be some widespread congestion issues throughout the network due to significant growth in the northern parts of Taupo, particularly on the TCG bridge and along Norman Smith Road and Acacia Bay Road. Option B1 and B2 have the lowest travel time when travelling in Peak direction in both AM and PM peak compared to Option A1 and D1 when travelling from either: Huka Falls to the CBD via the TCG bridge (and vice versa) and Acacia Bay to the CBD via the TCG Bridge (and vice versa). Overall, Option B1 and B2 performs the best against Option A1 and D1 in terms of improving the efficiency of the road network and supporting growth north of Taupo.	over the Walkato River. Similar to Option A1, based on the Taupo Model Update, this will improve the Level of Service for the Bridge, from LOS F (Present) to LOS C/D in 2033 in both the morning and evening peak hours. However, in 2053, it is expected that there will still be some widespread congestion issues throughout the network due to significant growth in the northern parts of Taupo.
Project Objectives	Resilience of the Road Network	This option does not provide an alternative route, but increasing the number of lanes means the bridge will be less prone to disruption in the event of roadworks/ accidents/ natural events, thereore improving resilience.	This option provides another alternative north-south connection between the north of Taupo and the Town Centre, crossing the harbour. This offers drivers a choice for travel and improves the resilience of the network, as one route can still be utilised in the event that the other route needs to be closed.	This option provides another alternative north-south connection between the north of Taupo and the Town Centre, crossing the harbour. This offers drivers a choice for travel and improves the resilience of the network, as one route can still be utilised in the event that the other route needs to be closed.	This option does not provide an alternative route, but increasing the number of lanes means the bridge will be less prone to disruption in the event of roadworks/ accidents/ natural events, improving resilience.
	Mode Share on Alternative Transport Uses	The existing Control Gates Bridge has a shared path/ footpath along either side, but there are opportunities to improve this. As part of this study, up to standard walking/ cycling facilities will be implemented to provide a connected facility for active mode users between the north and the Town Centre. Several intersections will be analysed to understand the local impacts of an option. During this process, safety aspects which were not identified as major concerns, could be considered for future mitigation. Increased capacity across the bridge means that it is less likely for the queues to extend to the intersections north/ south. This improves safety both across the bridge and at those locations.	are opportunities to improve this. As part of this study, up to standard walking/ cycling facilities will be implemented to provide a connected facility for active mode users between the north and the Town Centre. Several intersections will be analysed to understand the local impacts of the option.	The existing Control Gates Bridge has a shared path/ footpath along either side, but there are opportunities to improve this. As part of this study, up to standard walking/ cycling facilities will be implemented to provide a connected facility for active mode users between the north and the Town Centre. Several intersections will be analysed to understand the local impacts of an option. During this process, safety aspects which were not identified as major concerns, could be considered for future mitigation. This option will divert traffic away from the residential area. A reduction in traffic volume utilising Tongariro Street will likely improve safety for active mode users.	The existing Control Gates Bridge has a shared path/ footpath along either side, but there are opportunities to improve this. As part of this study, up to standard walking/ cycling facilities will be implemented to provide a connected facility for active mode users between the north and the Town Centre. Several intersections will be analysed to understand the local impacts of an option. During this process, safety aspects which were not identified as major concerns, could be considered for future mitigation. Increased capacity across the bridge means that it is less likely for the queues to extend to the intersections north/ south. This improves safety both across the bridge and at those locations.
Development (Technical Complexity/ Achievability)	Design, Site Characteristics & Constructability	Expanding the bridge in this location may not have the same construction complexity as Option B1 and B2 as it will, comparatively, require very little ground improvements. There is available land for use immediately adjacent to the existing structure where existing abutments can be made larger, or new abutments constructed to allow for the increase in lanes. This available land area will also allow for easier site access and insitu construction. Expanding the existing structure will require various geotechnical design considerations and hydraulic modelling. Scour protection may be required due to the proximity of the river to the current bridge substructure. The widened bridge may not be able to meet the latest standards in terms of freeboard, seismic or barrier containment. The road layout to the north/ south will need to be investigated to allow for the expansion to tie into the existing road layout. However these upgrades will likely be less complex than what is required for Options B1/B2. Available land use, for any type of bridge enlargement, may be limited to the East by the Taupo Control Gates. Road closure and diversions will have to be considered for this option, however construction methodologies can be altered to optimise.	Building a new bridge to connect to Opepe Street will be technically complex due to the large elevation difference over the Waikato River at that location. This requires a flyover or a long bridge, which will involve various geotechnical and hydraulic design considerations. Consideration also needs to be given to whether a pier support can be placed in Waikato River, and if not this will result in a long span (>100m) structure, making the detailed design significantly more complex. A number of powerlines that run across Opepe Street need to be relocated. The alignment severs Opepe Street which means solutions will need to be generated to mitigate the effects of the new alignment. In addition, vegetation removal, access roads, major cut/ fill earthworks and regrading will be required for the construction of this option. This option will not disturb the existing structure throughout construction so should not affect existing traffic flows along Wairakei Drive.	Building a new bridge to connect to Oruanui Street will be technically complex due to the large elevation difference over the Waikato River at that location. This requires a flyover or a long bridge, which will involve various geotechnical and hydraulic design considerations. Consideration also needs to be given to whether a pier support can be placed in Waikato River, and if not this will result in a long span (>100m) structure, making the detailed design significantly more complex. There is a powerline that runs near the end of Oruanui Street that may need to be relocated. The alignment severs Oruanui Street which means solutions will need to be generated to mitigate the effects of the new alignment. In addition, vegetation removal, access roads, major cut/ fill earthworks and regrading will be required for the construction of this option. This option will not disturb the existing structure throughout construction so should not affect existing traffic flows along Wairakei Drive.	also allow for easier site access and in-situ construction. Expanding the existing structure will require various geotechnical design considerations and hydraulic modelling. Scour protection may be required due to the proximity of the river to the current bridge substructure. The widened bridge may not be able to meet the latest standards in terms of freeboard,
	Consentability	As per Environment Waikato guidance, various consents may be required for altering a bridge	As per Environment Walkato guidance, various consents may be required for building a new bridge i.e building consent, resource consent for constructing a bridge over water and also for creating a new road connection.	As per Environment Walkato guidance, various consents may be required for building a new bridge i.e building consent, resource consent for constructing a bridge over water and also for creating a new road connection.	As per Environment Waikato guidance, various consents may be required for altering a bridge
Environmental and Cultural Impacts	Environmental Impacts	TBC	TBC	TBC	TBC
	Cultural Value	TBC	TBC	TBC	TBC
Social and Land Impacts	Social Impacts	A reduction in congestion/ travel time will likely have positive impacts on the well-being of drivers (i.e, reducing driver frustration from sitting in congestion). This option will have minor negative impacts on property owners (in particular, Mercury) and community facilities (i.e. Gates Park and the Walkato River) given it is only expanding by two lanes adjacent to the existing bridge. Access to Gates Park is unlikely to be compromised with the additional two lanes to the TCG Bridge and thus is a positive. Constructing two additional lanes adjacent to the existing TCG bridge may have negative social impacts on the residential development and commercial facilities nearby, however, the extent of impacts may not be as the same level as Option B1 and B2.		Option B2 will reduce congestion/ travel time, which will likely have positive impacts on the wellbeing of drivers (i.e., reducing driver frustration from sitting in congestion). The new alignment may have negative impacts on the Taupo Kids Community (especially the outdoor play area to the west) as it is perpendicular to Oruanui St Morth, however, design considerations could be investigated to avoid these negative impacts (i.e going around the Community Centre). This follows the design done previously done in 1998 provided by TDC. Similar to Option B1, Gates Park may potentially get severed due to the new alignment, but not to the same degree. Additionally, due to the change in grade around the Walkato River, this means that the road may need to be raised to meet the bridge. This could potentially impact Taupo Kids Community. Another bridge over the Walkato River may have negative impacts on the natural landscape views. The new connection will increase traffic onto Oraunui St, which may lead to community severance in the CBD. Construction of the new bridge may impact negatively on existing residential, educational/community and commercial facilities in vicinity in terms of noise, vibration and air quality. Overall, this has been scored as a low negative	A reduction in congestion/ travel time will likely have positive impacts on the well-being of drivers, (i.e., reducing driver frustration from sitting in congestion). This option will have very minor negative impacts on property owners (in particular, Mercury) and community facilities (i.e. Gates Park and the Waikato River) given it is only expanding by one lane adjacent to the existing bridge. Constructing two additional lanes adjacent to the existing TCG bridge may have negative social impacts on the residential development and commercial facilities nearby however, the extent of impacts may not be as the same level as Option B1 and B2.
	Land Considerations	This option will require some land requirements as the bridge expansion will require building a new structure. The land neighbouring east-west of the bridge is also owned by Mercury so land acquisition is most likely required (i.e Gates Park). However, the land requirements will not be to the same extent as required by Option B1 and B2.	This option will have more land requirements compared to Option A1 and D1 due to the new bridge being proposed across Waikato River, connecting at Opepe Street. Land at Gates Park and land south of the Waikato River will likely be required.	This option will have more land requirements compared to Option A1 and D1, and would require less land compared to Option B1. This is because a new bridge is required across Walkato River, connecting to Oruanui St. Land at Gates Park and land south of the Walkato River will likely required.	This option will require some land requirements as the bridge expansion will require building a new structure. The land neighbouring east-west of the bridge is also owned by Merucry so land acquisition is most likely required (i.e Cates Park). However, land requirements will not be to the same extent as required by Option B1 and B2.

APPENDIX F

TAUPŌ TRANSPORT MODEL: SENSITIVITY TESTS

1. Option Descriptions

This set of model outputs gives results for sensitivity tests for the 2033 Base Option, 2033 Option B2 and 2053 Option B2

2. Volume Plots

Figure 2.1 2033 Base Sensitivity Test Morning Peak Hour Volume Plot

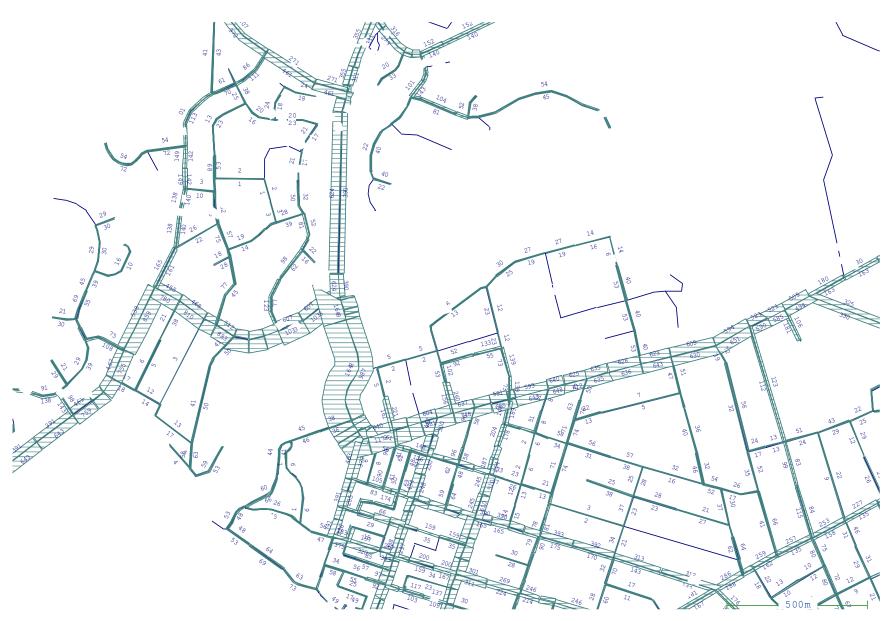


Figure 2.2 2033 Base Sensitivity Test Evening Peak Hour Volume Plot

WNZL-J020 23/02/2024 4

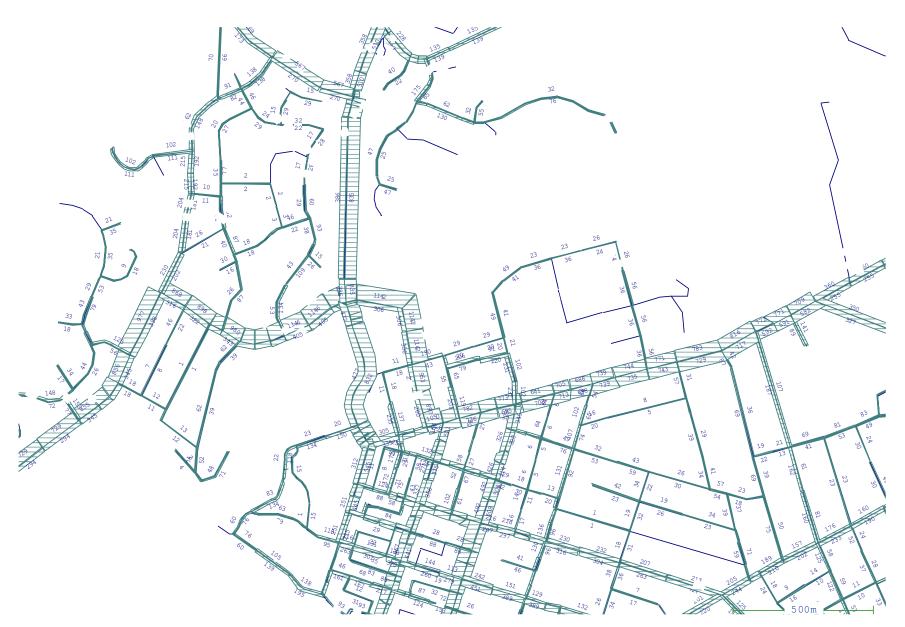


Figure 2.3 2033 Option B2 Sensitivity Test Morning Peak Hour Volume Plot WNZL-J020

Figure 2.4 2033 Option B2 Sensitivity Test Evening Peak Hour Volume Plot WNZL-J020

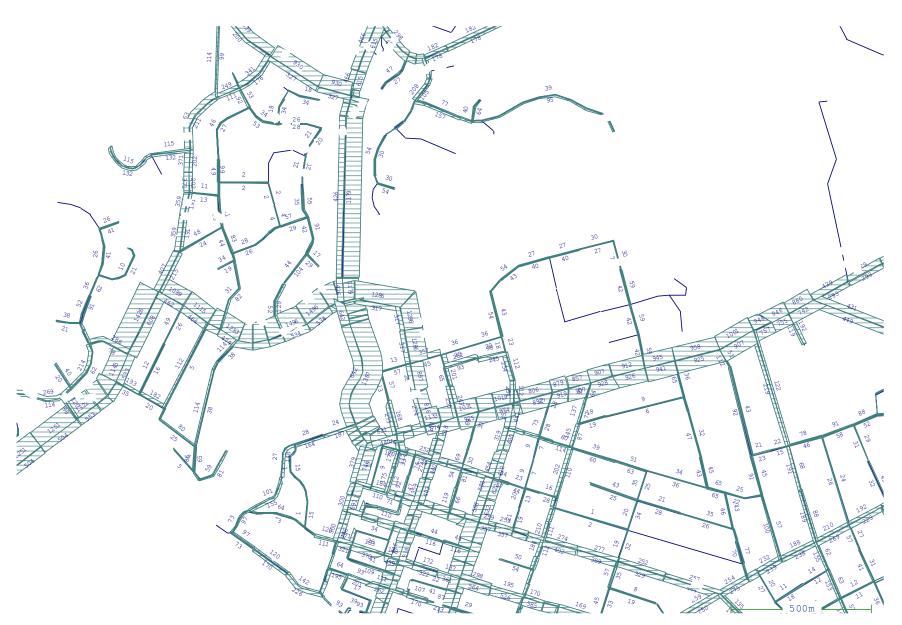


Figure 2.5 2053 Option B2 Sensitivity Test Morning Peak Hour Volume Plot WNZL-J020

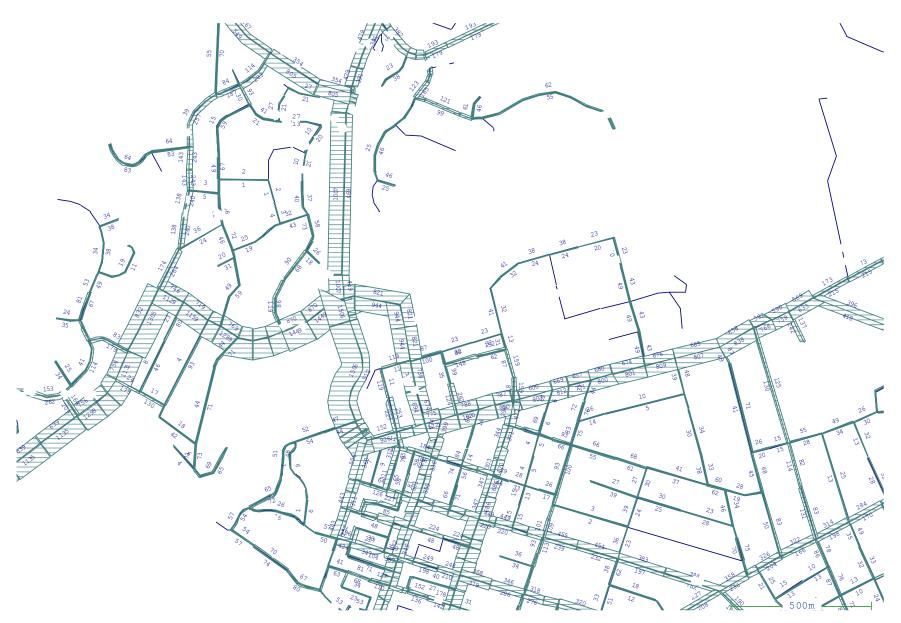


Figure 2.6 2053 Option B2 Sensitivity Test Evening Peak Hour Volume Plot WNZL-J020

3. Volume Change to Baseline Plots

9

Figure 3.1 2033 Base Sensitivity Test Morning Peak Hour Volume Change Plot $\mathsf{WNZL}\text{-}\mathsf{J}020$

Figure 3.2 2033 Base Sensitivity Test Evening Peak Hour Volume Change Plot WNZL-J020

11

Figure 3.3 2033 Option B2 Sensitivity Test Morning Peak Hour Volume Change Plot WNZL-J020

12

Figure 3.4 2033 Option B2 Sensitivity Test Evening Peak Hour Volume Change Plot WNZL-J020

Figure 3.5 2053 Option B2 Sensitivity Test Morning Peak Hour Volume Change Plot WNZL-J020

Figure 3.6 2053 Option B2 Sensitivity Test Evening Peak Hour Volume Change Plot WNZL-J020

4. Level of Service Plots

Figure 4.1 2033 Base Sensitivity Test Morning Peak Hour Level of Service Plot

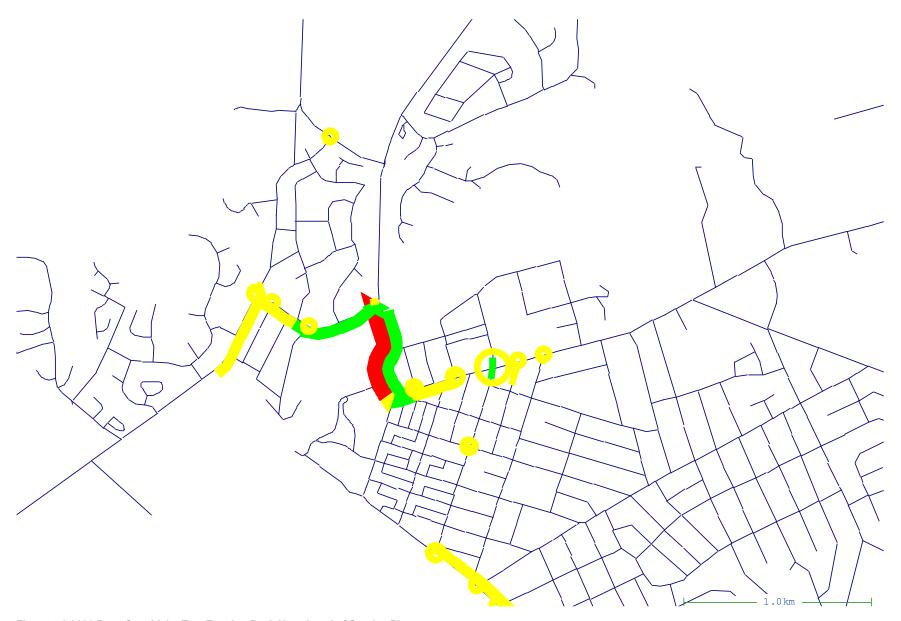


Figure 4.2 2033 Base Sensitivity Test Evening Peak Hour Level of Service Plot



Figure 4.3 2033 Option B2 Sensitivity Test Morning Peak Hour Level of Service Plot

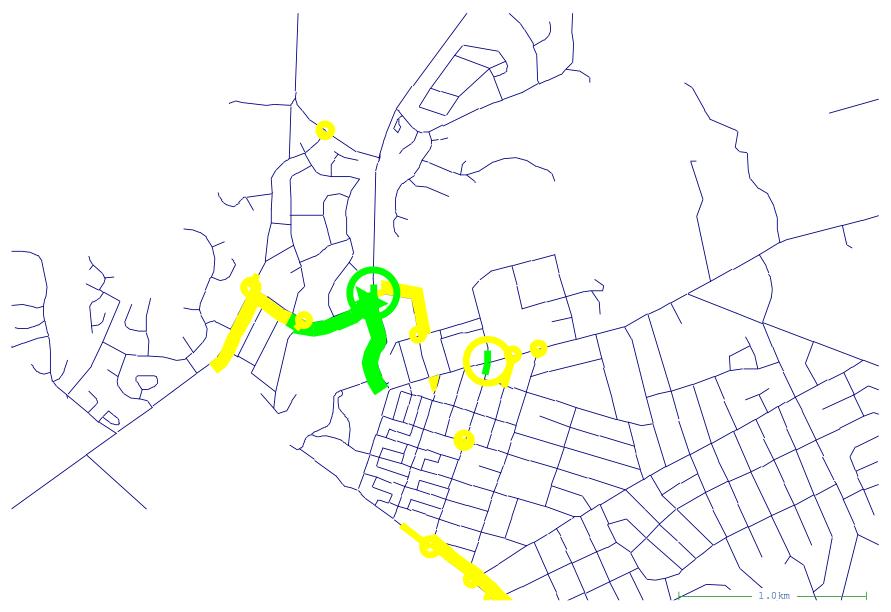


Figure 4.4 2033 Option B2 Sensitivity Test Evening Peak Hour Level of Service Plot WNZL-J020

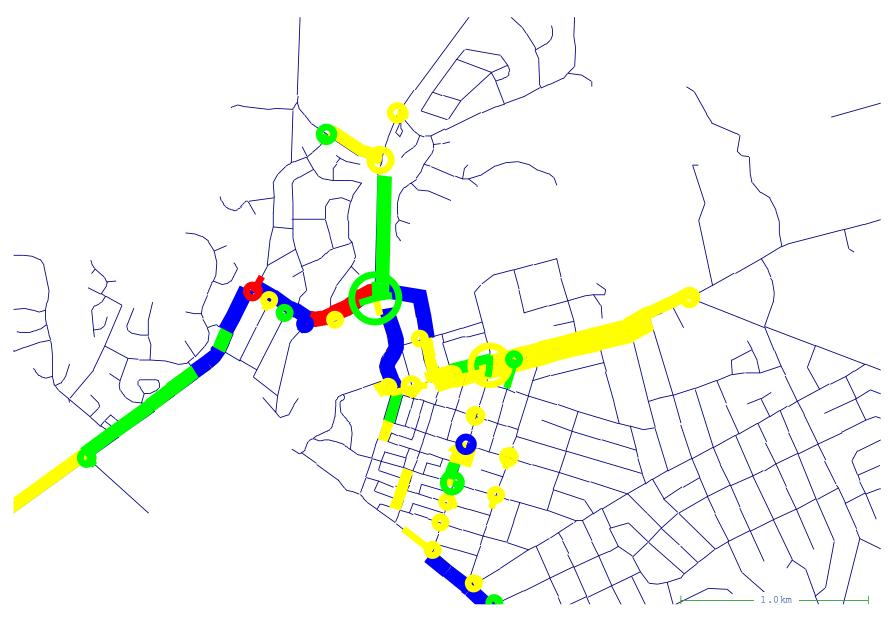
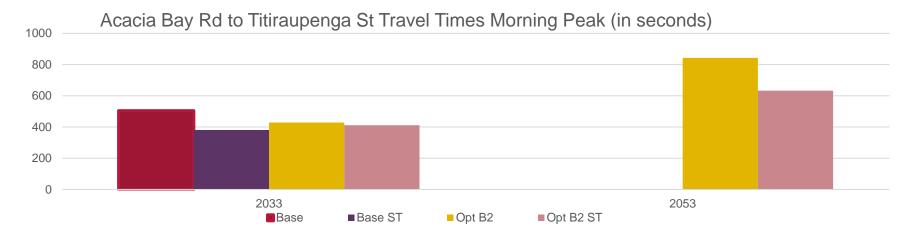


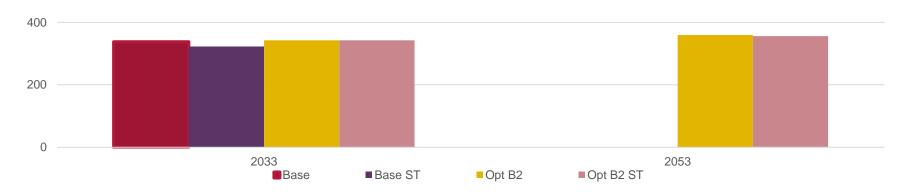
Figure 4.5 2053 Option B2 Sensitivity Test Morning Peak Hour Level of Service Plot

Figure 4.6 2053 Option B2 Sensitivity Test Evening Peak Hour Level of Service Plot WNZL-J020

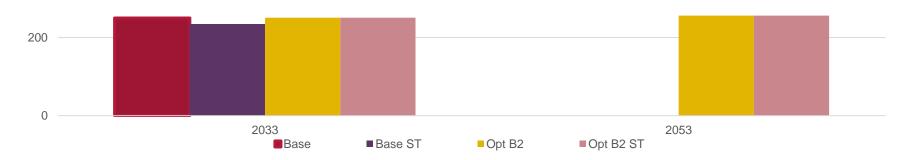
5. Level of Service Summary


Table 5.1 Number of Intersections at given LoS

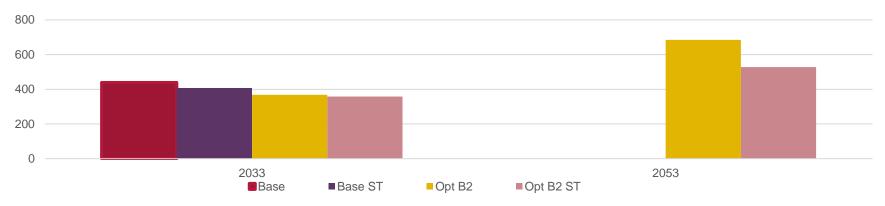
		33 Base	33 Base ST	33 Opt B2	33 Opt B2 ST	53 Opt B2	53 Opt B2 ST
AM	LoS C	44	43	46	41	48	44
	LoS D	0	1	1	1	14	10
	LoS E	4	1	2	1	5	4
	LoS F	2	3	2	3	6	2
PM	LoS C	38	34	38	32	45	38
	LoS D	1	1	2	1	13	9
	LoS E	1	1	1	1	3	1
	LoS F	1	1	1	1	3	2


Table 5.2 Lane Kilometres at given LoS

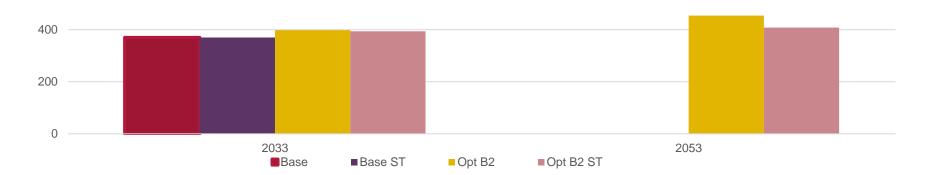
		33 Base	33 Base ST	33 Opt B2	33 Opt B2 ST	53 Opt B2	53 Opt B2 ST
AM	LoS C	2	2.4	3.4	3.0	5.3	6.2
	LoS D	3.2	4.4	3.3	3.5	3.5	3.9
	LoS E	0.5	0.4	0.5	0.2	4.9	3.6
	LoS F	0.5	0	0	0	1.7	0.4
PM	LoS C	2.8	2.9	3.4	3.1	6	8.1
	LoS D	2	2.1	2	2	3.9	3.4
	LoS E	0.4	0	0.2	0	4.7	2.5
	LoS F	0.5	0.5	0	0	1.2	0.9


6. Travel Times

Titiraupenga St to Acacia Bay Rd Travel Times Morning Peak (in seconds)

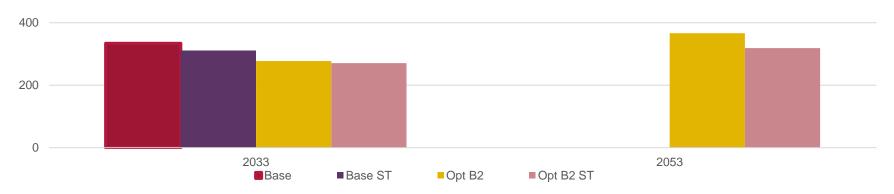


Huka Falls Rd to Tongariro St Travel Times Morning Peak (in seconds)



400

Titiraupenga St to Acacia Bay Rd Travel Times Evening Peak (in seconds)



Acacia Bay Rd to Titiraupenga St Travel Times Evening Peak (in seconds)

600

Tongariro St to Huka Falls Rd Travel Times Evening Peak (in seconds)

Huka Falls Rd to Tongariro St Travel Times Evening Peak (in seconds)

7. Travel Totals

		2033	2033 ST	2033 Opt B2	2033 Opt B2 ST	2053 Opt B2	2053 Opt B2 ST
Morning	Trips Total	15011	14603	15011	14603	20233	18986
Peak Hour	Vehicle Minutes	109418	105327	109731	105789	179611	154432
	Vehicle Kilometres	94507	91693	94224	91444	127423	121762
	Ave Trip Length (min)	7.29	7.21	7.31	7.24	8.88	8.13
	Ave Trip Length (km)	6.30	6.28	6.28	6.26	6.3	6.41
Evening	Trips Total	13784	13351	13784	13351	18599	17307
Peak Hour	Vehicle Minutes	85841	81501	83779	80091	139399	120022
	Vehicle Kilometres	68103	65276	68355	65449	95738	89632
	Ave Trip Length (min)	6.23	6.1	6.08	6	7.49	6.94
	Ave Trip Length (km)	4.94	4.89	4.96	4.9	5.15	5.18

Level of Service Methodology

Level of Service (LoS) gives an indicator for the degree of amenity to vehicle users on a network. In the context of this report, LoS is used as an indicator of network performance.

Figure 7.1 shows how Link LoS varies depending on link type. It shows that the higher the vehicle volume and the lower the free speed the worse the LoS becomes. Link types are defined as follows:

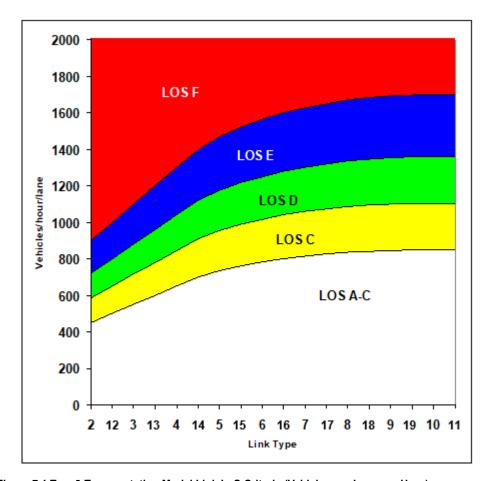
- Link type 1 equates to road speeds of 10km/hr
- Link type 2 and 12 equate to road speeds of 20km/hr and 25km/hr
- Link type 3 and 13 equate to road speeds of 30km/hr and 35km/hr
- Link type 4 and 14 equate to road speeds of 40km/hr and 45km/hr
- Link type 5 and 15 equate to road speeds of 50km/hr and 55km/hr
- Link type 6 and 16 equate to road speeds of 60km/hr and 65km/hr
- Link type 7 and 17 equate to road speeds of 70km/hr and 75km/hr
- Link type 8 and 18 equate to road speeds of 80km/hr and 85km/hr
- Link type 9 and 19 equate to road speeds of 90km/hr and 95km/hr
- Link type 10 and 11 equate to road speeds of 100km/hr and 110km/hr
- Link type 20 equates to road speeds of 105km/hr

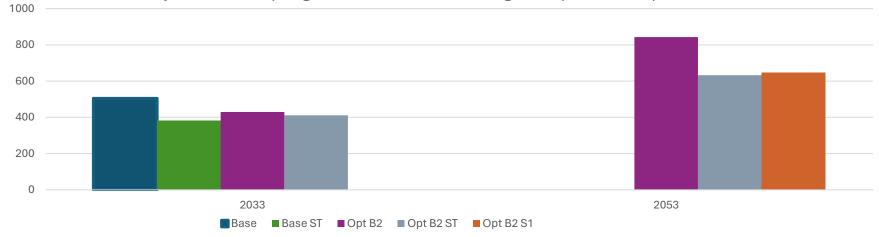
Intersection LoS is based on the delay values as given in Table 7.1. The colour coding in the table and figure corresponds to the colours applied in the LoS plots in section 3.4 of this report.

Table 7.1 Level of Service definitions and criteria

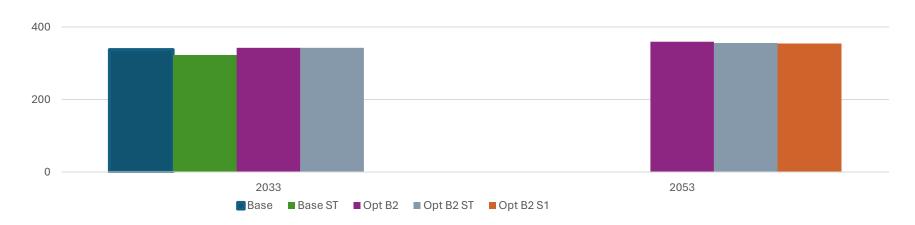
	Definitions Of LoS				
		Taupō	Transporta LoS crite	ersection	
LoS	Description	Link (vehicles		tersection lelay/veh)	
		per hour)	Priority	Signal/Rotary	
LoS F	Forced flow. The amount of traffic approaching a point exceeds that which can pass it. Flow break-downs occur, and queuing and delays occur.	In excess of 900-1700 depending on link type	50 sec	80 sec	
LoS E	Traffic volumes are at or close to capacity and there is virtually no freedom to select desired speed and to manoeuvre within the traffic stream. Flow is unstable and minor disturbances within the traffic stream will cause break-downs in operation.	Between 720-1360 depending on link type	35 sec	55 sec	
LoS D	Approaching unstable flow where all drivers are severely restricted in their freedom to select desired speed and to manoeuvre within the traffic stream. The general level of comfort and convenience is poor and small increases in traffic flow will cause operational problems.	Between 585-1105 depending on link type	25 sec	35 sec	
LoS C	Stable flow but most drivers are restricted to some extent in their freedom to select their desired speed and to manoeuvre within the traffic stream. The general level of comfort and convenience has declined noticeably.	Between 450-850 depending on link type	15 sec	20 sec	
LoS B	Stable flow where drivers still have reasonable freedom to select their desired speed and to manoeuvre within the traffic stream. The general level of comfort and convenience is less than LoS A.	Not Applicable	Not Applicable		

	Definitions Of LoS			
	Taupō Transportation Model LoS criteria			
LoS	Description	Link (vehicles		tersection lelay/veh)
		per hour)	Priority	Signal/Rotary
LoS A	Free flow in which drivers are virtually unaffected by the presence of others in the traffic stream. Freedom to select desired speeds and to manoeuvre within the traffic stream is extremely high and the general level of comfort and convenience is excellent.			



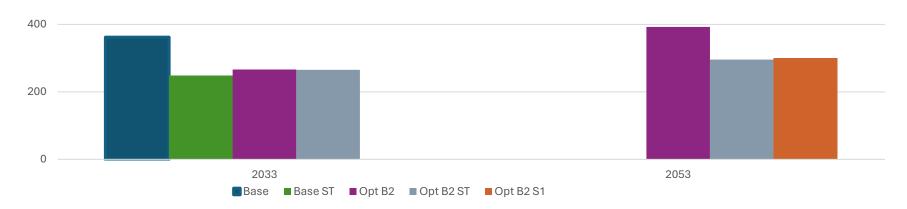

Figure 7.1 Taupō Transportation Model Link LoS Criteria (Vehicles per Lane per Hour)

This set of model outputs gives results for the sensitivity tests for 2053 Option B2 without the school.



2053 Morning Peak Option B2 – Hourly volume change when school removed from sensitivity test

Titiraupenga St to Acacia Bay Rd Travel Times Morning Peak (in seconds)


2053 Morning Peak Travel Times - Option B2 (Orange) Bar Added for Sensitivity Test with School Removed

400

Huka Falls Rd to Tongariro St Travel Times Morning Peak (in seconds)

2053 Morning Peak Travel Times - Option B2 (Orange) Bar Added for Sensitivity Test with School Removed

APPENDIX G

HIGH LEVEL COST ESTIMATIONS: OPTION A1, OPTION B1, OPTION B2

Project Estimate

Option A1

Taupo Northern Access Bridge Construction - Bridge Costs

Bridge Costs

	Taupo Northern Access Bridge Consti		tive Business (Case Estimate
Item	Description	Base Estimate	Contingency	Funding Risk
Α	Nett Project Property Cost	0	0	0
	Project Development Phase			
	- Consultancy Fees	0		
	- Client Managed Costs	0		
В	Total Project Development	-	-	-
	Pre-Implementation Phase			
	- Consultancy Fees	0		
	- Client Managed Costs	0		
С	Total Pre-implementation	0	0	0
	Implementation Phase			
	Implementation Fees			
1.1	- Consultancy Fees	0		
1.2	- Client Managed Costs	0		
1.3	- Consent Monitoring Fees	0		
	Sub Total Base Implementation Fees	0	0	0
	Physical Works			
1	Environmental Compliance	250,000		
2	Earthworks	0		
3	Ground Improvements	0		
4	Drainage	0		
5	Pavement and Surfacing	0		
6	Bridges	8,190,000		
7	Retaining Walls	528,000		
8	Traffic Services	0		
9	Service Relocations	300,000		
10	Landscaping	0		
11	Traffic Management and Temporary Works	450,000		
12	Preliminary and General	2,916,000		
13	Extraordinary Construction Costs	0		
	Sub Total Base Physical Works	12,634,000	2,268,000	2,829,000
D	Total construction	12,634,000	2,268,000	2,829,000
E	Project base estimate (A+C+D)	12,634,000		
$\overline{}$	Contingency (Assessed/Analysed)	(A+C+D)	2,268,000	
	Project expected estimate	(E+F)	14,902,000	
	ject Property Cost Expected Estimate		0	
	Development Phase Expected Estimate		0	
-	ementation Phase Expected Estimate		0	
impie nta	ation Phase Expected Estimate		14,902,000	
<u> </u>	F. H. C. L. A. C. C. L. A. C. L. C. D.			2
	Funding risk (Assessed/Analysed)		(A+C+D)	2,829,000
	95th percentile Project Estimate		(G+H)	17,731,000
	property cost 95th percentile estimate			0
	ation and reporting 95th percentile estimate and project documentation 95th percentile estimate			0
	ction 95th percentile estimate			17 731 000
Constitu	etion 35th percentile estillate			17,731,000
Data of	f estimate 02/2024	Cost Index (Qtr/	(Vaar) 12/2022	
	te prepared by Bob Burrows	Signed	1 (41) 12/2023	
	e internal peer review by Juancho Diaz	Signed		
	e external peer review by	Signed		
	te accepted by the NZTA	Signed		
Latinat	to accepted by the NZIA	Joigned		

1

Option A1

Taupo Northern Access Bridge Construction - Bridge Costs Working Schedule of Construction Costs Description ▼ Unit ▼ Quantity ▼ Rate ▼ Item Total Element Total Item 1 **Environmental Compliance** 250,000.00 1.1 Compliance 1.1.1 Environmental Compliance - Complete LS \$ 50,000.00 \$ 50,000.00 1.1.2 Contactor's Environmental Management Plan 1 \$ 25,000.00 25,000.00 1.1.3 Implementation and Management of the EMP \$ 50,000.00 50,000.00 1 **Environmental Controls** 1.2 1.2.1 **Enviromental Controls** 1 \$ 125,000.00 \$ 125,000.00 2 **Earthworks and Clearing** \$ **Not Applicable** 3 **Ground Improvements** \$ **Not Applicable** \$ 4 Drainage **Not Applicable** \$ 5 **Pavement** Not Applicable 6 Structures \$ 8,190,000.00 6.1 Bridges 6.1.1 Taupo Bridge 6.1.1.1 Superstructure 6.1.1.1.1 Bridge m2 630 13,000.00 \$8,190,000,00 **Retaining Walls** \$ 528,000.00 7.1 **MSE Walls** 7.1.1 MSE Reinforced Backfill Placement m2 176 3,000.00 \$ 528,000.00 8 **Traffic Services** \$ **Not Applicable** \$ 9 **Service Relocations** 300,000.00 9.1 Relocations 9.1.1 3.0 \$ 100,000.00 \$ 300,000.00 Relocate Existing services PS 10 **Landscaping & Entrances** \$ **Not Applicable** 11 **Traffic Management and Temporary Works** 450,000.00 11.1 **Traffic Management** 11.1.1 Establish and Maintain Temporary Traffic Mana LS 3 \$ 150,000.00 \$ 450,000.00 12 **Preliminary and General** \$ 2,915,400.00 12.1 **Preliminary and General** 12.1.1 Preliminary and General LS 30% \$ 9,718,000.00 \$ 2,915,400.00 13 **Extraordinary Construction Costs Not Applicable** \$ 12,633,400.00

Project Estimate

Option A1

Taupo Northern Access Bridge Construction - Road Approach

		Indica	tive Business (Case Estimate
Item	Description	Base Estimate	Contingency	Funding Risk
Α	Nett Project Property Cost	0	0	0
	Project Development Phase			
	- Consultancy Fees	0		
	- Client Managed Cost	0		
В	Total Project Development	-	-	-
	Pre-Implementation Phase			
	- Consultancy Fees	0		
	- Client Managed Cost		0	0
С	Total Pre-implementation	0	0	0
	Implementation Phase			
1.1	Implementation Fees - Consultancy Fees	0		
1.1	- Client Managed Costs	0		
1.3	- Consent Monitoring Fees	0		
1.5	Sub Total Base Implementation Fees	0	0	0
	Physical Works	0	U U	0
1	Environmental Compliance	250,000		
2	Earthworks	268,000		
3	Ground Improvements	0		
4	Drainage .	0		
5	Pavement and Surfacing	9,000,000		
6	Bridges	0		
7	Retaining Walls	1,250,000		
8	Traffic Services	500,000		
9	Service Relocations	300,000	<u> </u>	
10	Landscaping	0		
11	Traffic Management and Temporary Works	1,050,000		
12	Preliminary and General	3,786,000		
13	Extraordinary Construction Costs	0	2 010 000	2 222 222
	Sub Total Base Physical Works	16,404,000	2,910,000	2,833,000
D E	Total construction Project base estimate (A+C+D)	16,404,000 16,404,000	2,910,000	2,833,000
E	Floject base estillate (A+C+D)	10,404,000		
F	Contingency (Assessed/Analysed)	(A+C+D)	2,910,000	
G	Project expected estimate	(E+F)	19,314,000	
	ject Property Cost Expected Estimate	(=11)	0	
	Development Phase Expected Estimate		0	
	ementation Phase Expected Estimate		0	
Imple nta	ation Phase Expected Estimate		19,314,000	
Н	Funding risk (Assessed/Analysed)		(A+C+D)	2,833,000
I	95th percentile Project Estimate		(G+H)	22,147,000
	property cost 95th percentile estimate			0
	ation and reporting 95th percentile estimate			0
_	and project documentation 95th percentile estimate			0
Constru	ction 95th percentile estimate			22,147,000
Decision	5 anti-mate	Cont. India (Co.	(V) 12 /222	
	f estimate 02/2024	Cost Index (Qtr/	rear) 12/2023	
	e prepared by Bob Burrows e internal peer review by Juancho Diaz	Signed Signed		
	e external peer review by	Signed		
	e accepted by the NZTA	Signed		
_stiiiat	accepted by the h2171	Joigneu		

Option A1

	Taupo Northern Access	s Bridg	ge Constru	ıcti	on - Road	Αį	pproach		
	Working Sched	dule o	f Construc	tio	n Costs				
Item	▼ Description ▼	Unit 🔻	Quantity -	Rate	•	Ite	m Total 🔻	Ele	ment Total
1	Environmental Compliance							\$	250,000.00
1.1	Compliance								
1.1.1	Environmental Compliance - Complete	LS	1	\$	50,000.00	\$	50,000.00		
1.1.2	Contactor's Environmental Management Plan	LS	1	\$	25,000.00	\$	25,000.00		
1.1.3	Implementation and Management of the EMP	LS	1	\$	50,000.00	\$	50,000.00		
1.2	Environmental Controls								
1.2.1	Enviromental Controls	No.	1	\$	125,000.00	\$	125,000.00		
2	Earthworks and Clearing							\$	268,000.00
2.1	Clearing								
2.1.1	Clearing vegetation, General Site Clearance	LS	1	\$	25,000.00	\$	25,000.00		
2.2	Earthworks - Primary								
2.2.1	Cut to Waste Off-site	m3	3,600	\$	35.00	\$	126,000.00		
2.2.2	Import fill	m3	1,800	\$	65.00	\$	117,000.00		
3	Ground Improvements							\$	-
	Not Applicable								
4	Drainage							\$	-
	Not Applicable								
5	Pavement							\$	9,000,000.00
5.1	Works								
5.1.1	Construct Approach roading works	m2	3,600	\$	2,500.00	\$	9,000,000.00		
6	Structures		,			Ė	<u>, , , , , , , , , , , , , , , , , , , </u>	\$	-
	Not Applicable								
7	Retaining Walls							\$	1,250,000.00
7.1	MSE Walls							i	, ,
7.1.1	MSE Wall Installation	m2	500	\$	2,500.00	Ś	1,250,000.00		
8	Traffic Services			i i	,	Ė	,,	\$	500,000.00
8.1	Signals							Ė	
8.1.1	Structure								
8.1.1.1	Alter Existing Traffic Signals	No.	1	\$	500,000.00	\$	500,000.00		
9	Service Relocations		_	T	,	Ť	,	\$	300,000.00
9.1	Relocations							_	,
9.1.1	Relocate Existing services	PS	3	\$	100,000.00	\$	300,000.00		
10	Landscaping & Entrances	-			,	7	,	\$	_
	Not Applicable							7	
11	Traffic Management and Temporary Works							\$	1,050,000.00
11.1	Traffic Management							7	, = = -, = =
11.1.1	Establish and Maintain Temporary Traffic Mana	LS	7	\$	150,000.00	Ś	1,050,000.00		
12	Preliminary and General		,	7	, 500.00	_	, ,	\$	3,785,400.00
12.1	Preliminary and General							7	-,=, .55.56
12.1.1	Preliminary and General	LS	30%	\$1	2,618,000.00	Ś	3,785,400.00		
13	Extraordinary Construction Costs		3370	Ψ 1.	_,510,000.00	, ,	2,700,100.00	\$	
	Not Applicable							7	
								¢	16,403,400.00

Project Estimate

Taupo Northern Access Bridge Construction - Option B1 - Roading Cost

IBE

	Construction Option by Roading Cost	Indica	tive Business (siness Case Estimate			
ltem	Description	Base Estimate	Contingency	Funding Risk			
Α	Nett Project Property Cost	0	0	0			
	Project Development Phase						
	- Consultancy Fees	0					
	- Client Managed Costs	0					
В	Total Project Development	-	-	-			
	Pre-Implementation Phase						
	- Consultancy Fees	0					
	- Client Managed Costs	0					
С	Total Pre-implementation	0	0	0			
	Implementation Phase						
	Implementation Fees						
1.1	- Consultancy Fees	0					
1.2	- Client Managed Costs	0					
1.3	- Consent Monitoring Fees	0					
	Sub Total Base Implementation Fees	0	0	0			
	Physical Works						
1	Environmental Compliance	500,000					
2	Earthworks	3,150,000					
3	Ground Improvements	0,130,000					
4	Drainage	975,000					
5	Pavement and Surfacing	18,725,000					
6	Bridges	0					
7	Retaining Walls	0					
8	Traffic Services	_					
9		1,831,000					
	Service Relocations	1,000,000					
10	Lands caping	1,000,000					
11	Traffic Management and Temporary Works	1,200,000					
12	Preliminary and General	8,515,000					
13	Extraordinary Construction Costs	0	11.050.000	11.000.000			
_	Sub Total Base Physical Works	36,896,000	11,068,800	11,068,800			
D	Total construction	36,896,000	11,068,800	11,068,800			
E	Project base estimate (A+C+D)	36,896,000					
F	Contingency (Assessed/Analysed)	(A.C.D)	11.000.000				
G	Project expected estimate	(A+C+D) (E+F)	11,068,800 47,964,800				
	ject Property Cost Expected Estimate	(LTF)	47,904,800				
	Development Phase Expected Estimate		0				
	ementation Phase Expected Estimate		0				
	ation Phase Expected Estimate		47,964,800				
implema	ation i hase expected estimate		47,304,000				
	Franking wiels (Accorded / Apply and)		(A.C.D)	11 050 000			
Н	Funding risk (Assessed/Analysed)		(A+C+D)	11,068,800			
Project	95th percentile Project Estimate property cost 95th percentile estimate		(G+H)	59,033,600			
•	• • •			0			
	lation and reporting 95th percentile estimate and project documentation 95th percentile estimate			0			
				F0.033.600			
Constru	ction 95th percentile estimate			59,033,600			
Data	Footimete 03/303 f	Cook Index (C)	(V +) 12 /2022				
	f estimate 02/2024	Cost Index (Qtr/	Tear) 12/2023				
	te prepared by Bob Burrows	Signed					
	te internal peer review by Juancho Diaz	Signed					
	te external peer review by	Signed					
Estimat	te accepted by the NZTA	Signed					

1

Taupo Northern Access Bridge Construction - Option B1 - Roading

Working Schedule of Construction Costs ▼ Unit ▼ Quantity ▼ Rate **▼** Description **▼** Item Total ▼ Element Total ▼ **Environmental Compliance** 500,000.00 1 1.1 Compliance 1.1.1 Environmental Compliance - Complete ıs 2 \$ 50,000.00 \$ 100.000.00 1.1.2 Contactor's Environmental Management Plan 25,000.00 50,000.00 LS 2 Ś 1.1.3 Implementation and Management of the EMP LS 50,000.00 100,000.00 1.2 **Environmental Controls** 1.2.1 **Enviromental Controls** No. 2 \$ 125,000.00 \$ 250,000.00 **Earthworks and Clearing** \$ 3,150,000.00 2.1 Clearing 2.1.1 Clearing vegetation, General Site Clearance 25,000.00 \$ 375,000.00 2.2 Earthworks - Primary 2.2.1 Cut to Waste Off-site 5,000 \$ 35.00 175,000.00 m3 2.2.2 Import fill 40,000 65.00 \$ 2,600,000.00 3 **Ground Improvements Not Applicable** 974,700.00 Drainage 4.1 Kerbs 4.1.1 Supply and install kerb and channel 1,070 \$ 120.00 \$ 128,400.00 4.2 **Pipes and Culverts** 4.2.1 Pipes 4.2.1.1 General Drainage 500 1,500.00 \$ 750,000.00 m 4.3 Drains 4.3.1 Drains 4.3.1.1 110mm HDPE Perforated Subsoil Drain 1,070 \$ 90.00 \$ 96,300.00 \$ 18,725,000.00 **Pavement** 5.1 Works 5.1.1 Construct Approach roading works 7,490 \$ 2,500.00 \$ 18,725,000.00 Structures **Not Applicable Retaining Walls** \$ Not Applicable **Traffic Services** \$ 1,830,500.00 8.1 Barriers 8.1.1 W Section 8.1.1.1 Supply and Install W Section Guardrail 1,070 \$ 150.00 \$ 160,500.00 8.1.1.2 W Section Entry Terminal End Treatment Nο 2 Ś 6,500.00 | \$ 13,000.00 8.1.1.3 W Section Exit Terminal End Treatment No. 3,500.00 \$ 7,000.00 2 8.2 **Pavement Markings** 8.2.1 **Solid Lines** 8.2.1.1 Linemark general LS 1 \$ 15,000.00 \$ 15,000.00 8.3 Signs 8.3.1 Misc 8.3.1.1 General Sign supply and Installation 100,000.00 \$ 100,000.00 8.4 Lighting 8.4.1 Single Outreach 8.4.1.1 Supply and Install 10m high Column Complete, No. 9,500.00 \$ 285,000.00 8.4.2 Misc Undergroung cabling, controls etc 8.4.2.1 250,000.00 \$ 250,000.00 8.5 Signals 8.5.1 Structure 500,000.00 \$ 1,000,000.00 8.5.1.1 Alter Existing Traffic Signals No. **Service Relocations** \$ 1,000,000.00 9.1 Relocations 9.1.1 Relocate Existing services 100,000.00 \$ 1,000,000.00 10 **Landscaping & Entrances** \$ 1,000,000.00 10.1 **General Insert** 10.1.1 Landscaping general 1 \$ 1,000,000.00 \$ 1,000,000.00 **Traffic Management and Temporary Works** 11 \$ 1,200,000.00 11.1 **Traffic Management** 11.1.1 Establish and Maintain Temporary Traffic Mana LS 8 \$ 150,000.00 \$ 1,200,000.00 12 **Preliminary and General** \$ 8,514,060.00 12.1 **Preliminary and General** LS 30% \$ 28,380,200.00 \$ 8,514,060.00 12.1.1 Preliminary and General 13 **Extraordinary Construction Costs Not Applicable**

\$ 36,894,260.00

Project Estimate

Taupo Northern Access Bridge Construction - Option B1 - Bridging Cost

	Case Estimate			
ltem	Description	Base Estimate	Contingency	Funding Risk
Α	Nett Project Property Cost	0	0	0
	Project Development Phase			
	- Consultancy Fees	0		
	- Client Managed Costs	0		
В	Total Project Development	-	-	-
	Pre-Implementation Phase			
	- Consultancy Fees	0		
	- Client Managed Cost:	0		
С	Total Pre-implementation	0	0	0
	Implementation Phase			
	Implementation Fees			
1.1	- Consultancy Fees	0		
1.2	- Client Managed Costs	0		
1.3	- Consent Monitoring Fees	0		
	Sub Total Base Implementation Fees	0	0	0
	Physical Works			
1	Environmental Compliance	500,000		
2	Earthworks	439,000		
3	Ground Improvements	0		
4	Drainage	53,000		
5	Pavement and Surfacing	0		
6	Bridges	25,480,000		
7	Retaining Walls	1,488,000		
8	Traffic Services	0		
9	Service Relocations	0		
10	Landscaping	0		
11	Traffic Management and Temporary Works	300,000		
12	Preliminary and General	8,478,000		
13	Extraordinary Construction Costs	0		
	Sub Total Base Physical Works	36,738,000	11,021,400	11,021,400
D	Total construction	36,738,000	11,021,400	11,021,400
Е	Project base estimate (A+C+D)	36,738,000		
F	Contingency (Assessed/Analysed)	(A+C+D)	11,021,400	
G	Project expected estimate	(E+F)	47,759,400	
Nett Pro	ject Property Cost Expected Estimate		0	
_	Development Phase Expected Estimate		0	
Pre-imple	ementation Phase Expected Estimate		0	
Imple nta	ition Phase Expected Estimate		47,759,400	
Н	Funding risk (Assessed/Analysed)		(A+C+D)	11,021,400
- 1	95th percentile Project Estimate		(G+H)	58,780,800
Project	property cost 95th percentile estimate			0
_	ation and reporting 95th percentile estimate			0
De sign a	and project documentation 95th percentile estimate			0
Constru	ction 95th percentile estimate			58,780,800
	estimate 02/2024	Cost Index (Qtr/	Year) 12/2023	
	e prepared by Bob Burrows	Signed		
Estimat	e internal peer review by Juancho Diaz	Signed		
Estimat	e external peer review by	Signed		
Estimat	e accepted by the NZTA	Signed		

Taupo Northern Access Bridge Construction - Option B1 - Bridging Working Schedule of Construction Costs

Item 🔻	Description	Unit 🔻	Quantity 🔻	Rate	_	Iten	n Total	Elei	ment Total
1	Environmental Compliance							\$	500,000.00
1.1	Compliance								
1.1.1	Environmental Compliance - Complete	LS	2	\$	50,000.00	\$	100,000.00		
1.1.2	Contactor's Environmental Management Plan	LS	2	\$	25,000.00	\$	50,000.00		
1.1.3	Implementation and Management of the EMP	LS	2	\$	50,000.00	\$	100,000.00		
1.2	Environmental Controls								
1.2.1	Enviromental Controls	No.	2	\$	125,000.00	\$	250,000.00		
2	Earthworks and Clearing							\$	438,850.00
2.1	Clearing								
2.1.1	Clearing vegetation, General Site Clearance	LS	5	\$	25,000.00	\$	125,000.00		
2.2	Earthworks - Primary								
2.2.1	Cut to Waste Off-site	m3	1,000	\$	35.00	\$	35,000.00		
2.2.2	Import fill	m3	4,290	\$	65.00	\$	278,850.00		
3	Ground Improvements							\$	-
	Not Applicable								
4	Drainage							\$	52,500.00
4.1	Pipes and Culverts								
4.1.1	Pipes								
4.1.1.1	General Drainage	m	35	\$	1,500.00	\$	52,500.00		
5	Pavement				,		,	\$	-
	Not Applicable								
6	Structures							\$ 2	25,480,000.00
6.1	Bridges							<u> </u>	
6.1.1	Option B1 Bridge over Waikato River								
6.1.1.1	Superstructure								
6.1.1.1.1.1	·	m2	1,960	\$	13,000.00	\$ 2	5,480,000.00		
7	Retaining Walls			T		T .	,,	\$	1,488,000.00
7.1	MSE Walls							T .	
7.1.1	MSE Reinforced Backfill Placement	m2	496	\$	3,000.00	\$:	1,488,000.00		
8	Traffic Services			,	.,	<u> </u>	,,	\$	-
	Not Applicable							T.	
9	Service Relocations							\$	-
	Not Applicable							Ť	
10	Landscaping & Entrances							\$	-
	Not Applicable							T .	
11	Traffic Management and Temporary Works							\$	300,000.00
11.1	Traffic Management							T	000,000.00
11.1.1	Establish and Maintain Temporary Traffic Mana	ıs	2	\$	150,000.00	\$	300,000.00		
12	Preliminary and General				_55,555.50	7	355,300.00	\$	8,477,805.00
12.1	Preliminary and General							7	5, 177,005.00
12.1.1	Preliminary and General	LS	30%	\$ 28	,259,350.00	ς :	8,477,805.00		
13	Extraordinary Construction Costs		3070	7 20	,,	، ب	5, +77,005.00	\$	_
	Not Applicable							۲	
								¢ :	36,737,155.00

Project Estimate

Taupo Northern Access Bridge

Construction - Option B2 - Roading Cost Indicative Business Case Estimate Base Estimate Description Contingency **Funding Risk** Item Nett Project Property Cost Project Development Phase 0 - Consultancy Fees - Client Managed Costs 0 Total Project Development Pre-Implementation Phase - Consultancy Fees 0 - Client Managed Costs 0 Total Pre-implementation Implementation Phase Implementation Fees 1.1 - Consultancy Fees 0 0 1.2 - Client Managed Costs - Consent Monitoring Fees 0 Sub Total Base Implementation Fees Physical Works Environmental Compliance 500,000 Earthworks 4,819,000 Ground Improvements 375,000 Drainage Pavement and Surfacing 9,800,000 6 Bridges 0 7 **Retaining Walls** 0 1,659,000 8 Traffic Services 9 Service Relocations 1,000,000 10 1,000,000 Landscaping 1,050,000 11 Traffic Management and Temporary Works 6,061,000 12 Preliminary and General **Extraordinary Construction Costs** Sub Total Base Physical Works 26,264,000 7,879,200 7,879,200 7,879,200 Total construction 26,264,000 7,879,200 Project base estimate (A+C+D) 26,264,000 Contingency (Assessed/Analysed) 7,879,200 (A+C+D) Project expected estimate (E+F) 34,143,200 Nett Project Property Cost Expected Estimate Project Development Phase Expected Estimate 0 Pre-implementation Phase Expected Estimate 34,143,200 Implentation Phase Expected Estimate Funding risk (Assessed/Analysed) (A+C+D) 7,879,200 42,022,400 95th percentile Project Estimate (G+H) Project property cost 95th percentile estimate 0 Investigation and reporting 95th percentile estimate 0 Design and project documentation 95th percentile estimate 0 Construction 95th percentile estimate 02/2024 Cost Index (Qtr/Year) 12/2023 Date of estimate Estimate prepared by **Bob Burrows** Signed Estimate internal peer review by Juancho Diaz Signed Estimate external peer review by Signed Estimate accepted by the NZTA Signed

Taupo Northern Access Bridge Construction - Option B2 - Roading Working Schedule of Construction Costs

Environmental Compliance Compliance Environmental Compliance - Complete Contactor's Environmental Management Plan	LS					\$	500,000.00
Environmental Compliance - Complete	10						
	ıc						
Contactor's Environmental Management Plan	LJ	2	\$	50,000.00	\$ 100,000.00		
	LS	2	\$	25,000.00	\$ 50,000.00		
Implementation and Management of the EMP	LS	2	\$	50,000.00	\$ 100,000.00		
Environmental Controls							
Enviromental Controls	No.	2	\$	125,000.00	\$ 250,000.00		
Earthworks and Clearing						\$	4,818,200.00
Clearing						Ť	
	LS	12	Ś	25.000.00	\$ 300.000.00		
			-		· · · · · · · · · · · · · · · · · · ·	_	
		_	1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	+ =,===,=====		
-	m3	4.400	Ś	35.00	\$ 154,000,00		
						_	
·	1113	20,000	7	03.00	φ 1,00 i,200.00	_	
						۲	
• •						ć	375,000.00
-						ڔ	373,000.00
-						+	
		350	4	1 500 00	¢ 275 000 00	_	
-	m	250	Ş	1,500.00	\$ 375,000.00	_	0.000.000.00
						Ş	9,800,000.00
	_		_	2 - 2 - 2	40.000.5== ::		
	m2	3,920	Ş	2,500.00	\$ 9,800,000.00	_	
						\$	-
Retaining Walls						\$	-
Not Applicable							
Traffic Services						\$	1,659,000.00
Barriers							
W Section							
Supply and Install W Section Guardrail	m	560	\$	150.00	\$ 84,000.00		
W Section Entry Terminal End Treatment	No.	2	\$	6,500.00	\$ 13,000.00		
W Section Exit Terminal End Treatment	No.	2	\$	3,500.00	\$ 7,000.00		
Pavement Markings							
Solid Lines							
Linemark general	LS	1	\$	15.000.00	\$ 15.000.00		
	LS	1	Ś	100.000.00	\$ 100.000.00		
			T'	,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	No	20	¢	9 500 00	\$ 190,000,00		
	140.	20	٠	2,300.00	7 130,000.00		
	ıc	1	4	250 000 00	\$ 350,000,00		
	IJ	1	۶	230,000.00	۷ کارانانانان	+	
-						+	
	NI.		4	F00 000 00	¢ 1 000 000 00	-	
	NO.	2	Ş	500,000.00	\$ 1,000,000.00		4 000 000 0
			-			Ş	1,000,000.00
			_		4.005 :-	-	
-	PS	10	Ş	100,000.00	\$ 1,000,000.00		
						\$	1,000,000.00
General Insert							
Landscaping general	LS	1	\$ 1	.,000,000.00	\$ 1,000,000.00		
Traffic Management and Temporary Works						\$	1,050,000.00
Traffic Management							
Establish and Maintain Temporary Traffic Mana	LS	7	\$	150,000.00	\$ 1,050,000.00		
Preliminary and General						\$	6,060,660.00
Preliminary and General							
Preliminary and General	LS	30%	\$ 20),202,200.00	\$ 6,060,660.00		
					, , , , , ,	_	-
						Ť	
	Not Applicable Traffic Services Barriers W Section Supply and Install W Section Guardrail W Section Entry Terminal End Treatment W Section Exit Terminal End Treatment Pavement Markings Solid Lines Linemark general Signs Misc General Sign supply and Installation Lighting Single Outreach Supply and Install 10m high Column Complete, Misc Undergroung cabling, controls etc Signals Structure Alter Existing Traffic Signals Service Relocations Relocate Existing services Landscaping & Entrances General Insert Landscaping general Traffic Management and Temporary Works Traffic Management Establish and Maintain Temporary Traffic Mana Preliminary and General	Clearing vegetation, General Site Clearance Remove Existing Buildings LS Earthworks - Primary Cut to Waste Off-site Import fill M3 Ground Improvements Not Applicable Drainage Pipes and Culverts Pipes General Drainage Mayevement Works Construct Approach roading works Structures Not Applicable Retaining Walls Not Applicable Retaining Walls Not Applicable Traffic Services Barriers W Section Supply and Install W Section Guardrail M Section Exit Terminal End Treatment No. W Section Exit Terminal End Treatment No. Pavement Markings Solid Lines Linemark general Signs Misc General Sign supply and Installation LS Lighting Single Outreach Supply and Install 10m high Column Complete, Misc Undergroung cabling, controls etc LS Signals Structure Alter Existing Traffic Signals Structure Alter Existing Traffic Signals Service Relocations Relocate Existing services Landscaping & Entrances General Insert Landscaping & Entrances General Insert Landscaping & Entrances General Insert Landscaping ment and Temporary Works Traffic Management Preliminary and General Preliminary Construction Costs	Clearing vegetation, General Site Clearance LS 12 Remove Existing Buildings LS 1 Earthworks - Primary	Clearing vegetation, General Site Clearance LS	Clearing vegetation, General Site Clearance S	Clearing vegetation, General Site Clearance IS	Clearing vegetation, General Site Clearance LS

Project Estimate

Taupo Northern Access Bridge Construction - Option B2 - Bridging Cost

Indicative Rusiness Case Estimate

		Indicative Business Case Estimate		
ltem	Description	Base Estimate	Contingency	Funding Risk
Α	Nett Project Property Cost	0	0	0
	Project Development Phase			
	- Consultancy Fees	0		
	- Client Managed Costs	0		
В	Total Project Development	-	-	-
	Pre-Implementation Phase			
	- Consultancy Fees	0		
	- Client Managed Costs	0		
С	Total Pre-implementation	0	0	0
	Implementation Phase			
	Implementation Fees			
1.1	- Consultancy Fees	0		
1.2	- Client Managed Costs	0		
1.3	- Consent Monitoring Fees	0		
	Sub Total Base Implementation Fees	0	0	0
	Physical Works			
1	Environmental Compliance	500,000		
2	Earthworks	370,000		
3	Ground Improvements	0		
4	Drainage	45,000		
5	Pavement and Surfacing	0		
6	Bridges	21,840,000		
7	Retaining Walls	1,488,000		
8	Traffic Services Service Relocations	0		
_				
10 11	Landscaping Traffic Management and Temporary Works	300,000		
12	Preliminary and General	7,363,000		
13	Extraordinary Construction Costs	7,303,000		
, ,	Sub Total Base Physical Works	31,906,000	9,571,800	9,571,800
D	Total construction	31,906,000	9,571,800	9,571,800
	Project base estimate (A+C+D)	31,906,000	3,371,000	3,371,000
_	Troject base estimate (ATC15)	31,300,000		
F	Contingency (Assessed/Analysed)	(A+C+D)	9,571,800	
	Project expected estimate	(E+F)	41,477,800	
	ect Property Cost Expected Estimate		0	
Project [Development Phase Expected Estimate		0	
Pre-imple	ementation Phase Expected Estimate		0	
Imple nta	tion Phase Expected Estimate		41,477,800	
Н	Funding risk (Assessed/Analysed)		(A+C+D)	9,571,800
I	95th percentile Project Estimate		(G+H)	51,049,600
Project p	property cost 95th percentile estimate			0
Investigation and reporting 95th percentile estimate				0
Design and project documentation 95th percentile estimate				0
Constru	ction 95th percentile estimate			51,049,600
		Cost Index (Qtr/	Year) 12/2023	
Estimate prepared by Bob Burrows Signed				
Estimate internal peer review by Juancho Diaz Signed				
Estimate external peer review by Signed				
Estimate accepted by the NZTA Sign				

Taupo Northern Access Bridge Construction - Option B2 - Bridging Working Schedule of Construction Costs Item **▼** Description ▼ Unit ▼ Quantity ▼ Rate **▼** Item Total ▼ Element Total ▼ 1 **Environmental Compliance** 500,000.00 1.1 Compliance **Environmental Compliance - Complete** LS 2 \$ 50,000.00 \$ 100,000.00 1.1.1 1.1.2 Contactor's Environmental Management Plan 2 25,000.00 \$ 50,000.00 Implementation and Management of the EMP LS 2 \$ 50,000.00 \$ 100,000.00 1.1.3 **Environmental Controls** 1.2 1.2.1 **Environmental Controls** No. 2 \$ 125,000.00 \$ 250,000.00 **Earthworks and Clearing** 370,000.00 2 2.1 Clearing Clearing vegetation, General Site Clearance 2.1.1 LS 3 \$ 25,000.00 75,000.00 2.2 Earthworks - Primary 2.2.1 Cut to Waste Off-site m3 1,000 \$ 35.00 \$ 35,000.00 4,000 \$ 2.2.2 Import fill 65.00 \$ 260,000.00 m3 3 **Ground Improvements** \$ Not Applicable 4 Drainage 45,000.00 4.1 **Pipes and Culverts** 4.1.1 **Pipes** 4.1.1.1 General Drainage m 30 \$ 1,500.00 \$ 45,000.00 5 **Pavement Not Applicable** 6 Structures \$ 21,840,000.00 6.1 **Bridges** Option B2 Bridge over Waikato River 6.1.1 6.1.1.1 Superstructure 6.1.1.1.1.1 Bridge m2 1,680 13,000.00 \$ 21,840,000.00 **Retaining Walls** \$ 1,488,000.00 7.1 MSE Walls MSE Reinforced Backfill Placement \$ 7.1.1 m2 496 3,000.00 \$ 1,488,000.00 8 **Traffic Services** \$ **Not Applicable** \$ 9 **Service Relocations** Not Applicable 10 Landscaping & Entrances \$ Not Applicable 11 **Traffic Management and Temporary Works** 300,000.00 11.1 **Traffic Management** 11.1.1 Establish and Maintain Temporary Traffic Mana LS 2 \$ 150,000.00 300,000.00 12 Preliminary and General \$ 7,362,900.00 12.1 Preliminary and General LS 12.1.1 Preliminary and General 30% \$ 24,543,000.00 \$ 7,362,900.00 13 **Extraordinary Construction Costs** \$ **Not Applicable** \$ 31,905,900.00